Phthalic Anhydride-Mediated Direct Glycosylation of Anomeric Hydroxy Arabinofuranose: Synthesis of Repeating Oligoarabinofuranoside and Tetradecasaccharide Arabinan Motif of Mycobacterial Cell Wall

Bo-Young Lee, ${ }^{\dagger}$ Jung Woo Oh, ${ }^{\dagger}$ Ju Yuel Baek, ${ }^{\dagger}$ Heung Bae Jeon, ${ }^{*}{ }^{\dagger}$ and Kwan Soo Kim ${ }^{*}{ }^{\dagger}$
${ }^{\dagger}$ Center for Bioactive Molecular Hybrids and Department of Chemistry, Yonsei University, Seoul 120-749, Korea
${ }^{\dagger}$ Department of Chemistry, Kwangwoon University, Seoul 139-701, Korea

(S) Supporting Information

Abstract

An efficient direct phthalic anhydride-mediated one-pot glycosylation method employing anomeric hydroxy arabinofuranose as glycosyl donor and triflic anhydride as activating agent has been developed. This method afforded the desired di- and oligoarabinofuranosides in good yields even in gram scale glycosylation when t butylphthalic anhydride was used. Moreover, our new method can be further extended to the syntheses of repeating oligoarabinofuranoside and tetradecasaccharide arabinan motif found in mycobacterial cell wall.

Mycobacterial infections have received significant attention due to their increasing incidence over the world. In particular, Mycobacterium tuberculosis, the causative agent of tuberculosis, is the most well-known pathogenic strain of mycobacteria. ${ }^{1}$ Recently, tuberculosis (TB) has "reappeared" as a major threat to human health. Successful treatment of TB requires a regimen of multiple antibiotics that must be administered over a number of months, ${ }^{2}$ and failure to complete this process is a major cause of drug resistance. ${ }^{3}$ Inhibition of the biosynthesis of the mycobacterial cell wall represents an exciting therapeutic opportunity for the development of new drugs to combat TB. ${ }^{4}$ In particular, assembly of the carbohydrate sections of the cell wall, many of which are unique to mycobacteria, has been a field of intense interest over recent years. Several research groups have been attempting to inhibit mycobacterial cell wall biosynthesis by inhibition of particular enzymes involved in the proposed biosynthetic pathways. ${ }^{5}$

Two major components of the mycobacterial cell wall are arabinogalactan and lipoarabinomannam, both of which have mycobacterial arabinan moiety as a common constituent containing large domains of D -arabinofuranose (Araf) units that are predominantly linked $\alpha(1 \rightarrow 5)$ as shown in Figure 1. ${ }^{6}$ In addition, the further complexity have been found at the 2-Oposition of inner 3,5-branched-Araf connected by 2-amino-2-deoxy-galactose $\left(\mathrm{GalNH}_{2}\right)$ or succinate ester in arabinan domain. ${ }^{6 \mathrm{~b}, 7}$ Recently, Lowary group reported the synthesis of the tetrasaccharide containing both GalNH_{2} anomers attached to the triarabinofuranoside (3,5-branched-Araf) and the

Figure 1. Structure of a mycobacterial arabinan terminus and tetradecasaccharide 1.
elucidation of GalNH_{2} connected by α-linkage to core Araf by the comparison with natural arabinan by NMR spectra. ${ }^{8}$ Although many groups have achieved the synthesis of

[^0]Scheme 1. Synthesis of C-1 Hydroxy Sugar 8 and Glycosyl Acceptor 6

oligosaccharide arabinan motifs of mycobacterial cell wall, ${ }^{9-28}$ there is no previous study for the synthesis of oligofuranoside containing GalNH ${ }_{2}$ except this report as far as we know. In addition, because the formation of furanosyl linkage is generally more difficult than that of pyranosyl linkage, the leaving groups at furanosyl donors have been essential for the successful furanosylation and most of them have employed only a few representative leaving groups, such as thioaryl or alkylate, ${ }^{9-23,29}$ pentenyl, ${ }^{23-26}$ and trichloroacetimidate. ${ }^{9,17,30}$ Accordingly, there still remains a need for new and efficient furanosylation methodologies. In our efforts to develop the furanosylation method, we achieved recently an efficient direct furanosylation protocol. We herein describe the direct phthalic anhydridemediated one-pot furanosylation method employing anomeric hydroxy arabinofuranose as glycosyl donor and the efficient synthesis of repeating oligoarabinofuranoside using our new method. We also report the synthesis of suitably protected compound 2 of tetradecasaccharide $\mathbf{1}$, which is composed of α GalNH ${ }_{2}$ and $\alpha(1 \rightarrow 5)$-(Araf $)_{13}$, for selective deprotection at $3,5-\mathrm{O}$ positions to be connected with $\alpha(1 \rightarrow 3)-(\mathrm{Araf})_{\mathrm{n}}$ and $\alpha(1 \rightarrow 5)$-(Araf) $)_{\mathrm{n}}$ in arabinan domain (Figure 1).

For the preparation of arabinofuranosyl acceptor 6 and donor 8 , compound 3^{31} was transformed in 87% yield to the corresponding allyl glycoside 4 on treatment of allyl alcohol and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (Scheme 1). Removal of the acetyl groups in 4 was achieved by stirring with NaOMe in MeOH , affording diol in 98% yield. The resulting diol was then converted to compound 5 upon reaction with BzCl and pyridine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The fully protected glycoside 5 was transformed upon treatment with $2 \% \mathrm{HCl}$ to give the glycosyl acceptor 6 in 90% yield. For the selective deprotection with Bz group at later stage, the levulinylation of compound 6 was conducted to give 7 in 93% yield prior to the Pd-catalyzed cleavage of the allyl ether group providing 8 with free anomeric hydroxyl group in 85% yield.

The one-pot direct mannosylation protocol, ${ }^{32}$ which was developed by our group, was applied to the arabinosylation of C-1 hydroxy arabinofuranose employing various phthalic anhydrides (Table 1). In those experiments, the arabinosylation with compound 8 was carried out by a sequence of three steps in one-pot in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: (1) stirring the solution of 8 , substituted phthalic anhydride, and DBU in the presence of $4 \AA$ molecular sieves for 15 min at room temperature in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (2) addition of DTBMP and 6 to the above solution at $-40^{\circ} \mathrm{C}$ and stirring the resulting solution, and (3) slow addition of $\mathrm{Tf}_{2} \mathrm{O}$ at $-40^{\circ} \mathrm{C}$ and stirring the reaction mixture at -40 to $0^{\circ} \mathrm{C}$. The reaction of 8 with 6 under the modified condition afforded α diarabinofuranoside 9 .

At first, when phthalic anhydride was used, the reaction afforded desired disaccharide 9 along with self-condensed ester

Table 1. Synthesis of $\boldsymbol{\alpha}$-Diarabinofuranoside 9 Employing Various Substituted Phthalic Anhydrides

8 (Scale)	substituted phthalic anhydride	9 (Yield) $^{\text {a }}$
60 mg		83\%
110 mg		83\%
279 mg	《》	62\%
603 mg		57\%
70 mg		86\%
150 mg	$0 \forall \gamma^{0}$	80\%
245 mg	- F	70\%
578 mg		36\%
65 mg		75\%
528 mg		68\%
845 mg		70\%
1.35 g		73\%

${ }^{a}$ Isolated yield.
and decomposed donor. In the reactions up to 110 mg scale, disaccharide 9 was obtained in high yield. However, gradual decrease of product yield was observed as the reaction scale increased. When we changed phthalic anhydride to 3fluorophthalic anhydride, ${ }^{33}$ we obtained slightly better results up to 245 mg scale, but not at larger scale. On the other hand, coupling reaction with t-butylphthalic anhydride produced the desired disaccharide 9 in $68-75 \%$ yield independent to the scale of anomeric hydroxy sugar 8. Although the reason that t butylphthalic anhydride is better activator than others is not clear, these surprising results encouraged us to prepare the repeating oligoarabinofuranoside by one-pot direct glycosylation.

Toward the synthesis of triarabinofuranoside, compound 9 was converted into disaccharide anomeric hydroxy sugar 10 as

Scheme 2. Synthesis of Trisaccharide C-1 Hydoxy Sugar 12 and Trisaccharide Acceptor 13

Scheme 3. Synthesis of Dodecasaccharide Acceptor 19

the next glycosyl donor upon deallylation over PdCl_{2} in MeOH (Scheme 2). Reaction of anomeric hydroxy sugar 10 and acceptor 6 under the standard glycosylation conditions afforded α-trisaccharide 11 in 77\% yield. The NMR spectrum of 11 in CDCl_{3} showed three anomeric carbon peaks at $\delta 104.9,105.9$, and 106.1. For the preparation of trisaccharide donor and acceptor suited for the synthesis of the repeating oligosaccharide, compound 11 was transformed to anomeric hydroxy sugar 12 and 13 by deallylation and delevulinylation, respectively.

Repetitive glycosylation of the trisaccharide anomeric hydroxy sugar 12 with the trisaccharide 13 as an acceptor resulted α-hexasaccharide 14 in 65% yield, which then was
converted into the hexasaccharide acceptor 15 by removal of its levulinyl group with hydrazine (Scheme 3). Glycosylation of the trisaccharide donor 12 with the glycosyl acceptor 15 afforded α-nonasaccharide 16 in 63% yield. Deprotection of the levulinyl group in 16 with hydrazine gave the nonasaccharide acceptor 17 in 90% yield. The arabinosylation of the trisaccharide donor 12 with the nonasaccharide acceptor 17 proceeded smoothly under the standard conditions to afford dodecasaccharide 18 in 67% yield. Deprotection of the levulinyl group proceeded uneventfully to give dodecasaccharide acceptor 19 in 90% yield. This new protocol would be considered as

Scheme 4. Synthesis of Tetradecasaccharide 2 in Arabinan

one of the most convenient and efficient methods to prepare oligoarabinofuranoside.

For the synthesis of the tetradecasaccharide 2 in arabinan, the suitably protected α-GalNH ${ }_{2}$-(1 $\rightarrow 2$)-arabinofuranosyl trichloroacetimidate 25 was prepared from 2-azido-galactosyl trichloroacetimidate $\mathbf{2 0}{ }^{34}$ and arabinofuranosyl acceptor $\mathbf{2 1}^{34}$ (Scheme 4). The crucial stereoselective α-galactosylation was readily achieved by activation of the glycosyl donor 20 with TMSOTf, followed by the addition of the acceptor 21. The desired α-disaccharide 22 was obtained in 94% yield. Reduction of the azide group by treatment of 22 with $\mathrm{Ph}_{3} \mathrm{P}$ and acetylation of the resulting amine afforded the N-acetyl protected disaccharide 23. Compound 23 was converted into disaccharide anomeric hydroxy sugar 24 by deallylation over PdCl_{2} in MeOH . Subsequent treatment with trichloroacetonitrile and DBU provided the expected trichloroacetimidate donor 25. Finally, the coupling of the disaccharide donor 25 and the dodecasaccharide acceptor 19 in the presence of TMSOTf afforded the desired suitably protected tetradecasaccharide 2 in 65% yield.

In conclusion, we have established a reliable direct one-pot gycosylation of C-1 hydroxy arabinofuranose without a leaving group at furanosyl donor by employing t-butylphthalic anhydride as activator in good yield even in gram scale reaction. The power of the present arabinofuranosylation method was demonstrated by the efficient synthesis of repeating oligoarabinofuranoside and tetradecasaccharide arabinan motif found in mycobacterial cell wall.

EXPERIMENTAL SECTION

General Information. All reactions were conducted under a positive pressure of dry argon with dry, freshly distilled solvents unless otherwise noted. All reagents were purchased from commercial suppliers and used without further purification unless otherwise noted. Dichloromethane and acetonitrile were distilled from calcium hydride. Ethyl acetate and hexane were distilled. Flash column chromatography was performed employing $230-400$ mesh silica gel. Thin-layer chromatography was performed using silica gel 60 F254 precoated plates (0.25 mm thickness) with a fluorescent indicator. Visualization on TLC was achieved by UV light (254 nm) and a typical TLC indication solution (cerium sulfate/molybdic acid solution). NMR spectra were recorded on a 400 MHz NMR spectrometer. Chemical
shifts were reported in parts per million (ppm) downfield from tetramethylsilane (TMS).
Allyl 2,3-Di-O-acetyl-5-O-t-butyldiphenylsilyl- α-D-arabinofuranoside (4). To a solution of compound $3^{31}(7.65 \mathrm{~g}, 14.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ were added allyl alcohol ($2.02 \mathrm{~mL}, 29.7 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(2.83 \mathrm{~mL}, 22.3 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 1.5 h . The reaction mixture was quenched with saturated aqueous NaHCO_{3}, and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with aqueous NaHCO_{3} and brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/EtOAc, 5:1) to afford compound $4(6.63 \mathrm{~g}, 87 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.73$ (hexane/ EtOAc, 3:1, v/v); $[\alpha]_{\mathrm{D}}{ }^{20}=+34.5\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.07(\mathrm{~s}, 9 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{dd}, J=11.2$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=11.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=13.2,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.15(\mathrm{dd}, J=9.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=13.2,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.07(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=10.4,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.26(\mathrm{dd}, J=5.2,0.8 \mathrm{~Hz} 1 \mathrm{H}), 5.32(\mathrm{dd}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.85-$ $5.97(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.68-7.74(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.4,20.85,20.90,26.8,63.3,67.9,77.2,82.2$, $82.8,104.8,117.4,127.7,127.8,129.78,129.81,133.35,133.39,134.0$, 135.75, 135.78, 169.9, 170.2. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{7} \mathrm{Si}: \mathrm{C}, 65.60 ; \mathrm{H}$, 7.08. Found: C, 65.55 ; H, 7.21 .

Allyl 2,3-Di-O-benzoyl-5-O-t-butyldiphenylsilyl- α-D-arabinofuranoside (5). A mixture of compound $4(8.29 \mathrm{~g}, 16.2 \mathrm{mmol})$ and $\mathrm{NaOMe}(175 \mathrm{mg}, 3.23 \mathrm{mmol})$ in $\mathrm{MeOH}(50 \mathrm{~mL})$ was stirred at room temperature for 1 h . The reaction mixture was neutralized with DOWEX CCR-3 (H^{+}mode) resin, filtered through Celite, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc, 3:1) to afford allyl 5-O-t-butyldiphenylsilyl- α-D-arabinofuranoside $(6.79 \mathrm{~g}, 98 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.30$ (hexane/EtOAc, 3:1, v/v); $[\alpha]_{\mathrm{D}}{ }^{20}=+184.3(\mathrm{c} 0.8$, CHCl_{3}); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.06(\mathrm{~s}, 9 \mathrm{H}), 3.00(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.75 (dd, $J=11.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=11.6,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.01-4.09(\mathrm{~m}, 2 \mathrm{H}), 4.11-4.19(\mathrm{~m}, 3 \mathrm{H}), 4.24(\mathrm{dd}, J=12.8$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=10.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{dd}, J$ $=17.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.84-5.96(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.65-$ $7.72(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 19.1, 26.8, 64.2, 68.2, 78.1, $78.6,87.6,107.6,117.8,128.0,128.1,130.2,130.3,131.9,132.0$, 133.8, 135.7, 135.8. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 67.26 ; \mathrm{H}, 7.53$. Found: C, 67.25; H, 7.45.

To a solution of allyl $5-O-t$-butyldiphenylsilyl- α-D-arabinofuranoside $(6.79 \mathrm{~g}, 15.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) were added benzoyl chloride $(5.52 \mathrm{~mL}, 47.5 \mathrm{mmol})$, pyridine ($7.69 \mathrm{~mL}, 95.1 \mathrm{mmol}$), and 4 dimethylaminopyridine ($387 \mathrm{mg}, 3.17 \mathrm{mmol}$). After stirring at room
temperature for 2 h , the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic layer was washed with $1 \mathrm{~N} \mathrm{HCl}(2 \times 30 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, and brine (50 mL); dried over MgSO_{4}; and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc, 8:1) to afford compound $5(9.49 \mathrm{~g}, 94 \%)$ as a white solid. $\mathrm{R}_{f}=0.45$ (hexane/EtOAc, 8:1, v/v); mp 113-114 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=-92.7\left(\mathrm{c} 2.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.07(\mathrm{~s}, 9 \mathrm{H}), 4.01-4.09(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{dd}, J=$ $8.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.34(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=9.6,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.22 (dd, $J=10.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 5.37$ (dd, $J=17.2,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{dd}, J=5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.90-6.03(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.58(\mathrm{~m}, 12 \mathrm{H}), 7.71-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.96-$ $8.10(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.4,26.9,63.7,67.9$, $77.5,82.6,83.1,105.0,117.4,127.8,128.4,128.9,129.3,129.6,129.8$, 130.0, 130.6, 133.2, 133.3, 133.4, 134.0, 134.6, 135.7, 165.5, 165.7. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{Si}$: C, 71.67; H, 6.33. Found: C, 71.63; H, 6.15 .

Allyl 2,3-Di-O-benzoyl- α-D-arabinofuranoside (6). To a solution of compound $5(7.26 \mathrm{~g}, 11.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added 2% $\mathrm{HCl}(40 \mathrm{~mL})$ in $\mathrm{MeOH}(40 \mathrm{~mL})$. The resulting solution was stirred at room temperature for 10 h , and then the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(3 \times 50 \mathrm{~mL})$ and brine $(50$ mL), dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc, $3: 1)$ to afford compound $6(4.09 \mathrm{~g}, 90 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.30$ (hexane/EtOAc, 3:1, v/v); $[\alpha]_{\mathrm{D}}{ }^{20}=-34.7$ (c 2.1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.36$ (dd, $J=7.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.94-4.06 (m, $2 \mathrm{H}), 4.12(\mathrm{dd}, J=13.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=13.2,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.35 (dd, $J=8.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=10.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~s}$, $1 \mathrm{H}), 5.37(\mathrm{dd}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.89-6.01(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.62$ $(\mathrm{m}, 2 \mathrm{H}), 8.02-8.11(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 62.5$, 68.0, 78.0, 82.1, 83.8, 104.9, 117.6, 128.6, 128.7, 129.2, 129.3, 130.0, 130.1, 133.7, 133.8, 165.5, 166.4. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{7}: \mathrm{C}, 66.32$; H, 5.57. Found: C, 66.26; H, 5.54.

Allyl 2,3-Di-O-benzoyl-5-O-levulinyl- α-D-arabinofuranoside (7). To a solution of compound $6(7.80 \mathrm{~g}, 19.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50$ mL) were added levulinic acid ($3.41 \mathrm{~g}, 29.4 \mathrm{mmol}$), N, N diisopropylcarbodimide ($4.55 \mathrm{~mL}, 29.4 \mathrm{mmol}$), and 4-dimethylaminopyridine ($239 \mathrm{mg}, 1.96 \mathrm{mmol}$). After stirring at room temperature for 4 h , the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc, 3:1) to afford compound $7(9.04 \mathrm{~g}, 93 \%)$ as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.25$ (hexane/ EtOAc, 3:1, v/v); $[\alpha]_{\mathrm{D}}{ }^{20}=-6.6\left(\mathrm{c} 1.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.59-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.77(\mathrm{~m}, 2 \mathrm{H}), 4.12$ $(\mathrm{dd}, J=13.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=12.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41$ (dd, J $=11.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{dd}, J=8.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{dd}, J=11.6$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dd}, J=10.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{dd}, J$ $=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.89-6.02(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.63(\mathrm{~m}, 2 \mathrm{H}), 8.04-$ $8.10(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.0,29.9,38.0,63.9$, 68.1, 77.9, 81.1, 81.9, 105.1, 117.5, 128.6, 128.7, 129.2, 129.3, 130.0, 130.1, 133.65, 133.74, 133.8, 165.5, 165.9, 172.6, 206.5. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{9}$: C, 65.31; H, 5.68. Found: C, 65.23; H, 5.66.

2,3-Di-O-benzoyl-5-O-levulinyl- α / β-D-arabinofuranose (8). A mixture of compound $7(7.04 \mathrm{~g}, 14.2 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}(503 \mathrm{mg}, 2.84$ $\mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL}, 10: 1, \mathrm{v} / \mathrm{v})$ was stirred at room temperature for 8 h . The reaction mixture was filtered through Celite and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/EtOAc, 3:2) to afford compound $8(5.51 \mathrm{~g}$, $85 \%, \alpha / \beta=2: 1$) as a colorless amorphous form. $\mathrm{R}_{f}=0.20$ (hexane/ EtOAc, 3:2, v/v); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.18$ $(\mathrm{s}, 1.5 \mathrm{H}), 2.58-2.88(\mathrm{~m}, 6 \mathrm{H}), 3.85(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.31(\mathrm{~m}$, $0.5 \mathrm{H}), 4.35-4.45(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{dd}, J=11.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.66$ $(\mathrm{m}, 1 \mathrm{H}), 4.72(\mathrm{dd}, J=12.0,4.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.41(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.50(\mathrm{dd}, J=6.8,4.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.80(\mathrm{t}, J=4.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.86(\mathrm{t}, J=6.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.40-7.49(\mathrm{~m}$, $6 \mathrm{H}), 7.53-7.62(\mathrm{~m}, 3 \mathrm{H}), 8.03-8.11(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 27.9,28.0,29.89,29.93,37.96,38.02,64.0,64.6,75.9,77.5$, 77.9, 78.8, 81.2, 82.3, 95.2, 101.0, 128.57, 128.61, 128.63, 128.7, 129.0, 129.1, 129.96, 130.04, 130.1, 133.6, 133.70, 133.72, 133.8, 165.6, 165.9, 165.95, 166.02, 172.6, 172.8, 206.8, 207.8. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{9} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 479.1318$. Found: 479.1317.

Allyl (2,3-Di-O-benzoyl-5-O-levulinyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-2,3-di-O-benzoyl- α-D-arabinofuranoside (9). A solution of 8 (1.35 g, $2.96 \mathrm{mmol}, 1.0$ equiv), t-butylphthalic anhydride ($906 \mathrm{mg}, 4.44$ mmol, 1.5 equiv), and $\operatorname{DBU}(0.538 \mathrm{~mL}, 3.55 \mathrm{mmol}, 1.2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ in the presence of $4 \AA$ molecular sieves was stirred for 15 min at room temperature and cooled down to $-40^{\circ} \mathrm{C}$. Then a solution of a glycosyl acceptor $6(1.53 \mathrm{~g}, 3.84 \mathrm{mmol}, 1.3$ equiv) and DTBMP ($1.52 \mathrm{~g}, 7.39 \mathrm{mmol}, 2.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ were added sequentially at $-40^{\circ} \mathrm{C}$ and the resulting solution was stirred for further 15 min at $-40^{\circ} \mathrm{C}$. After dropwise addition of a solution of $\mathrm{Tf}_{2} \mathrm{O}\left(0.647 \mathrm{~mL}, 3.84 \mathrm{mmol}, 1.3\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.5 \mathrm{~mL})$ to the above solution via cannula, the reaction mixture was stirred at $-40^{\circ} \mathrm{C}$ for 15 min , allowed to warm up over 1 h to $0^{\circ} \mathrm{C}$, quenched with saturated aqueous NaHCO_{3}, and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phase was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/EtOAc, $2: 1$) to afford compound $9(1.81 \mathrm{~g}$, 73%) as a colorless oil. $\mathrm{R}_{f}=0.45$ (hexane/EtOAc, 3:2, v/v); $[\alpha]_{\mathrm{D}}{ }^{20}=$ $-2.8\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.13(\mathrm{~s}, 3 \mathrm{H})$, $2.56-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.75(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{dd}, J=11.2,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.09(\mathrm{dd}, J=12.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=11.2,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.28(\mathrm{dd}, J=13.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dd}, J=12.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.48$ (dd, $J=7.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.65(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{dd}, J=10.4,0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J=17.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.88-6.01(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.64(\mathrm{~m}, 12 \mathrm{H}), 7.90-8.11(\mathrm{~m}, 8 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.9,29.9,38.0,63.8,66.3,67.9,77.5$, 77.8, 81.3, 81.5, 82.0, 82.1, 104.9, 106.0, 117.5, 128.5, 128.58, 128.63, 128.7, 129.1, 129.15, 129.23, 129.4, 129.92, 129.94, 130.00, 130.03, $133.5,133.55,133.59,133.7,133.9,165.2,165.5,165.80,165.83$, 172.6, 206.5. Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{44} \mathrm{O}_{15}$: C, 66.02; H, 5.30. Found: C, 66.00; H, 5.28.
(2,3-Di-O-benzoyl-5-O-levulinyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-2,3-di-O-benzoyl- α / β-D-arabinofuranose (10). A mixture of compound $9(8.55 \mathrm{~g}, 10.2 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}(362 \mathrm{mg}, 2.04 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL}, 10: 1, \mathrm{v} / \mathrm{v})$ was stirred at room temperature for 8 h . The reaction mixture was filtered through Celite and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/EtOAc, 1:1) to afford compound $10(7.16 \mathrm{~g}, 88 \%, \alpha / \beta=2: 1)$ as a colorless amorphous form. $\mathrm{R}_{f}=0.30$ (hexane/EtOAc, $1: 1, \mathrm{v} / \mathrm{v}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.127(\mathrm{~s}, 3 \mathrm{H}), 2.133(\mathrm{~s}, 1.5 \mathrm{H}), 2.55-$ $2.65(\mathrm{~m}, 3 \mathrm{H}), 2.68-2.76(\mathrm{~m}, 3 \mathrm{H}), 3.73(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J$ $=11.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=11.6,2.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.19(\mathrm{dd}, J=$ $11.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=9.6,4.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.29-4.33(\mathrm{~m}$, $0.5 \mathrm{H}), 4.35(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.37-4.44(\mathrm{~m}, 1.5 \mathrm{H}), 4.55-4.69(\mathrm{~m}$, $4 \mathrm{H}), 5.38-5.44(\mathrm{~m}, 2.5 \mathrm{H}), 5.47(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.52-5.57(\mathrm{~m}$, $2 \mathrm{H}), 5.58-5.65(\mathrm{~m}, 3 \mathrm{H}), 5.77(\mathrm{dd}, J=7.2,4.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.98(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.28-7.61(\mathrm{~m}, 18 \mathrm{H}), 7.93-8.08(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.9,29.9,38.0,63.77,63.82,66.7,67.8,75.8$, $77.45,77.50,77.7,78.0,79.9,81.0,81.2,81.5,82.0,82.1,82.5,95.3$, 100.9, 106.1, 106.4, 128.4, 128.48, 128.52, 128.54, 128.60, 128.63, 128.7, 128.88, 128.94, 128.99, 129.03, 129.11, 129.14, 129.2, 129.88, 129.93, 129.98, 130.01, 130.1, 133.5, 133.56, 133.59, 133.64, 133.7, 133.9, 165.2, 165.6, 165.7, 165.76, 165.79, 165.87, 165.94, 166.0, 172.58, 172.60, 206.7, 206.8. HRMS (ESI) calcd for $\mathrm{C}_{43} \mathrm{H}_{40} \mathrm{O}_{15} \mathrm{Na}$ [M $+\mathrm{Na}]^{+}: 819.2265$. Found: 819.2265.

Allyl [(2,3-Di-O-benzoyl-5-O-levulinyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-d-arabinofuranosyl)]-(1 \rightarrow 5)-2,3-di-O-benzoyl- α-D-arabinofuranoside (11). A solution of 10 ($966 \mathrm{mg}, 1.21$ mmol, 1.0 equiv), t-butylphthalic anhydride ($371 \mathrm{mg}, 1.82 \mathrm{mmol}, 1.5$ equiv), and DBU ($0.220 \mathrm{~mL}, 1.45 \mathrm{mmol}, 1.2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL) in the presence of $4 \AA$ molecular sieves was stirred for 15 min at
room temperature and cooled down to $-40^{\circ} \mathrm{C}$. Then a solution of a glycosyl acceptor $6(628 \mathrm{mg}, 1.58 \mathrm{mmol}, 1.3$ equiv) and DTBMP (622 $\mathrm{mg}, 3.03 \mathrm{mmol}, 2.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added sequentially at $-40{ }^{\circ} \mathrm{C}$ and the resulting solution was stirred for further 15 min at $-40^{\circ} \mathrm{C}$. After dropwise addition of a solution of $\mathrm{Tf}_{2} \mathrm{O}$ ($0.265 \mathrm{~mL}, 1.58 \mathrm{mmol}, 1.3$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ to the above solution via cannula, the reaction mixture was stirred at $-40^{\circ} \mathrm{C}$ for 15 min , allowed to warm up over 1 h to $0^{\circ} \mathrm{C}$, quenched with saturated aqueous NaHCO_{3}, and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phase was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/EtOAc, 3:2) to afford compound 11 (1.10 g , 77%) as a colorless amorphous form. $\mathrm{R}_{f}=0.40$ (hexane $/ \mathrm{EtOAc}, 1: 1$, $\mathrm{v} / \mathrm{v}) ;[\alpha]_{\mathrm{D}}{ }^{20}=+4.0\left(\mathrm{c} 1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $2.12(\mathrm{~s}, 3 \mathrm{H}), 2.55-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.73(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{dd}, J=$ $10.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=10.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=13.2$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.24(\mathrm{~m}, 2 \mathrm{H}), 4.24-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=$ $11.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.49(\mathrm{~m}, 1 \mathrm{H}), 4.52-4.65(\mathrm{~m}, 3 \mathrm{H}), 5.20(\mathrm{dd}, J$ $=10.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.38-5.42(\mathrm{~m}, 2 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~s}$, $1 \mathrm{H}), 5.61-5.67(\mathrm{~m}, 3 \mathrm{H}), 5.87-6.00(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.30(\mathrm{~m}, 4 \mathrm{H})$, $7.37-7.61(\mathrm{~m}, 14 \mathrm{H}), 7.88-7.94(\mathrm{~m}, 4 \mathrm{H}), 7.99-8.08(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.9,29.9,38.0,63.7,66.0,66.2,67.9$, $77.4,77.8,81.2,81.6,81.7,82.0,82.1,104.9,105.9,106.1,117.4$, 128.39, 128.41, 128.5, 128.6, 128.7, 129.0, 129.2, 129.3, 129.4, 129.88, 129.92, 129.97, 130.01, 133.3, 133.4, 133.5, 133.7, 133.9, 165.2, 165.3, 165.5, 165.75, 165.80, 172.6, 206.4. Anal. Calcd for $\mathrm{C}_{65} \mathrm{H}_{60} \mathrm{O}_{21}$: C, 66.32; H, 5.14. Found: C, 66.40; H, 5.25.
[(2,3-Di-O-benzoyl-5-O-levulinyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)]-(1 \rightarrow 5)-2,3-di-O-benzoylα / β-D-arabinofuranose (12). A mixture of compound 11 (3.98 g, 3.38 $\mathrm{mmol})$ and $\mathrm{PdCl}_{2}(120 \mathrm{mg}, 0.677 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL}$, $10: 1, \mathrm{v} / \mathrm{v}$) was stirred at room temperature for 8 h . The reaction mixture was filtered through Celite and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/EtOAc, $1: 1)$ to afford compound $12(3.35 \mathrm{~g}, 87 \%, \alpha / \beta=2: 1)$ as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.28$ (hexane/EtOAc, $1: 1, \mathrm{v} / \mathrm{v}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $2.12(\mathrm{~s}, 9 \mathrm{H}), 2.55-2.62(\mathrm{~m}, 6 \mathrm{H}), 2.68-2.72(\mathrm{~m}, 6 \mathrm{H}), 3.28(\mathrm{~d}, J=3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.90-3.99(\mathrm{~m}, 5 \mathrm{H}), 4.01(\mathrm{dd}, J=11.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-$ $4.24(\mathrm{~m}, 6 \mathrm{H}), 4.26-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.37-4.43(\mathrm{~m}, 3 \mathrm{H}), 4.53-4.64(\mathrm{~m}$, $10 \mathrm{H}), 4.67-4.72(\mathrm{~m}, 1 \mathrm{H}), 5.38-5.45(\mathrm{~m}, 9 \mathrm{H}), 5.52-5.63(\mathrm{~m}, 16 \mathrm{H})$, $5.68(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{dd}, J=7.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.27-7.60(\mathrm{~m}, 54 \mathrm{H}), 7.90-8.07(\mathrm{~m}, 36 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.0,29.9,38.0,63.8,66.4,66.5,67.5,75.8,77.1,77.4$, $77.5,77.8,78.2,80.1,81.2,81.3,81.6,81.8,81.9,82.1,82.3,82.5,95.4$, 101.0, 105.97, 106.04, 106.1, 106.3, 128.45, 128.51, 128.54, 128.61, 128.63, 128.65, 128.68, 128.9, 129.05, 129.07, 129.11, 129.16, 129.18, 129.22, 129.24, 129.3, 129.96, 130.00, 130.02, 130.1, 133.39, 133.43, $133.5,133.58,133.61,133.7,133.8,165.3,165.4,165.7,165.79$, 165.82, 165.9, 166.0, 166.1, 172.6, 206.5. Anal. Calcd for $\mathrm{C}_{62} \mathrm{H}_{56} \mathrm{O}_{21}$: C, 65.49; H, 4.96. Found: C, 65.50; H, 4.75 .

Allyl [(2,3-Di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)]-(1 \rightarrow 5)-2,3-di-O-benzoyl- α-D-arabinofuranoside (13). A solution of compound 11 ($4.21 \mathrm{~g}, 3.58 \mathrm{mmol}$) and 66% hydrazine-acetic acid ($1: 2, \mathrm{v} / \mathrm{v}, 15 \mathrm{~mL}$) in THF-MeOH $(10: 1, \mathrm{v} / \mathrm{v}, 44 \mathrm{~mL})$ was stirred at room temperature for 1 h . The solvent was removed and the resulting oil was dissolved in EtOAc (70 mL). The EtOAc solution was washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried over MgSO_{4}, concentrated in vacuo, and the residue was purified by silica gel flash column chromatography (hexane/EtOAc, 2:1) to afford compound 13 $(3.48 \mathrm{~g}, 90 \%)$ as a colorless amorphous form. $\mathrm{R}_{f}=0.63$ (hexane/ EtOAc, 1:1, v/v); $[\alpha]_{\mathrm{D}}{ }^{20}=-5.3\left(\mathrm{c} 0.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 2.39(\mathrm{brs}, 1 \mathrm{H}), 3.89-4.04(\mathrm{~m}, 4 \mathrm{H}), 4.09(\mathrm{dd}, J=13.2,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.16-4.24(\mathrm{~m}, 2 \mathrm{H}), 4.25-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.43-4.51(\mathrm{~m}, 2 \mathrm{H})$, $4.63(\mathrm{dd}, J=7.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=10.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~s}$, $1 \mathrm{H}), 5.35(\mathrm{dd}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.40-5.45(\mathrm{~m}, 3 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H})$, $5.61-5.68(\mathrm{~m}, 4 \mathrm{H}), 5.87-6.00(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.37-$ $7.61(\mathrm{~m}, 14 \mathrm{H}), 7.87-7.94(\mathrm{~m}, 4 \mathrm{H}), 8.00-8.08(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 62.4,66.0,66.2,67.9,77.4,77.5,77.8,81.7,81.8$,
82.00, 82.02, 82.1, 83.8, 104.9, 105.86, 105.91, 117.5, 128.39, 128.42, 128.56, 128.63, 129.07, 129.14, 129.16, 129.19, 129.3, 129.4, 129.88, 129.93, 129.97, 130.01, 133.35, 133.41, 133.5, 133.57, 133.64, 133.9, 165.2, 165.3, 165.5, 165.80, 165.84, 166.2. Anal. Calcd for $\mathrm{C}_{60} \mathrm{H}_{54} \mathrm{O}_{19}$: C, 66.78; H, 5.04. Found: C, 66.81; H, 4.87.

Allyl [(2,3-Di-O-benzoyl-5-O-levulinyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-d-ara-binofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)]-(1 $\rightarrow 5)-2,3-d i-O$-benzoyl- α-D-arabinofuranoside (14). A solution of 12 ($942 \mathrm{mg}, 0.828 \mathrm{mmol}, 1.0$ equiv), t-butylphthalic anhydride $(254 \mathrm{mg}$, $1.24 \mathrm{mmol}, 1.5$ equiv), and DBU ($0.151 \mathrm{~mL}, 0.994 \mathrm{mmol}, 1.2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ in the presence of $4 \AA$ molecular sieves was stirred for 15 min at room temperature and cooled down to $-40^{\circ} \mathrm{C}$. Then a solution of a glycosyl acceptor $13(1.16 \mathrm{~g}, 1.08 \mathrm{mmol}, 1.3$ equiv) and DTBMP ($425 \mathrm{mg}, 2.07 \mathrm{mmol}, 2.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ were added sequentially at $-40^{\circ} \mathrm{C}$ and the resulting solution was stirred for further 15 min at $-40{ }^{\circ} \mathrm{C}$. After dropwise addition of a solution of $\mathrm{Tf}_{2} \mathrm{O}\left(0.181 \mathrm{~mL}, 1.08 \mathrm{mmol}, 1.3\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ to the above solution via cannula, the reaction mixture was stirred at $-40^{\circ} \mathrm{C}$ for 15 min , allowed to warm up over 1 h to $0^{\circ} \mathrm{C}$, quenched with saturated aqueous NaHCO_{3}, and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phase was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/EtOAc, 3:2) to afford compound 14 (1.19 g , 65%) as a colorless amorphous form. $\mathrm{R}_{f}=0.35$ (hexane/EtOAc, $1: 1$, $\mathrm{v} / \mathrm{v}) ;[\alpha]_{\mathrm{D}}{ }^{20}=+3.7\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $2.11(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.73(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.96(\mathrm{~m}$, $5 \mathrm{H}), 4.08(\mathrm{dd}, J=12.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.22(\mathrm{~m}, 5 \mathrm{H}), 4.27(\mathrm{dd}, J=$ $13.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37$ (dd, $J=11.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.49(\mathrm{~m}, 1 \mathrm{H})$, $4.51-4.63(\mathrm{~m}, 6 \mathrm{H}), 5.20(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 5.31-5.42$ $(\mathrm{m}, 7 \mathrm{H}), 5.53-5.66(\mathrm{~m}, 11 \mathrm{H}), 5.87-5.99(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.61(\mathrm{~m}$, $36 \mathrm{H}), 7.83-8.08(\mathrm{~m} .24 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.0$, 29.9, 38.0, 63.8, 65.9, 66.0, 66.2, 67.9, 77.3, 77.36, 77.41, 77.7, 81.2, 81.5, 81.7, 82.0, 82.1, 82.2, 104.9, 105.9, 106.0, 106.1, 117.5, 128.4, $128.6,128.7,129.0,129.15,129.21,129.3,129.4,129.99,130.03$, 133.25, 133.31, 133.4, 133.48, 133.52, 133.7, 133.9, 165.19, 165.24, 165.3, 165.5, 165.7, 165.75, 165.77, 165.82, 172.6, 206.5. Anal. Calcd for $\mathrm{C}_{122} \mathrm{H}_{108} \mathrm{O}_{39}$: C, 66.66; H, 4.95. Found: C, 66.53; H, 5.14.

Allyl [(2,3-Di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-ara-binofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)]-(1 \rightarrow 5)-2,3-di-O-benzoyl- α-D-arabinofuranoside (15). A solution of compound 14 $(2.24 \mathrm{~g}, 1.02 \mathrm{mmol})$ and 66% hydrazine-acetic acid ($1: 2, \mathrm{v} / \mathrm{v}, 9 \mathrm{~mL}$) in THF-MeOH ($10: 1, \mathrm{v} / \mathrm{v}, 22 \mathrm{~mL}$) was stirred at room temperature for 1 h. The solvent was removed and the resulting oil was dissolved in EtOAc (30 mL). The EtOAc solution was washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$, dried over MgSO_{4}, concentrated in vacuo, and the residue was purified by silica gel flash column chromatography (hexane/ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 5: 2: 2$) to afford compound $15(1.99 \mathrm{~g}, 93 \%)$ as a colorless amorphous form. R_{f} $=0.23$ (hexane $/ \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 5: 2: 2, \mathrm{v} / \mathrm{v} / \mathrm{v}$); $[\alpha]_{\mathrm{D}}{ }^{20}=+7.4(\mathrm{c} \mathrm{0.5}$, CHCl_{3}); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.35$ (brs, 1 H), 3.87-4.01 $(\mathrm{m}, 7 \mathrm{H}), 4.08(\mathrm{dd}, J=13.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.22(\mathrm{~m}, 5 \mathrm{H}), 4.27$ (dd, $J=13.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.49(\mathrm{~m}, 2 \mathrm{H}), 4.55-4.63(\mathrm{~m}, 4 \mathrm{H})$, $5.20(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 5.31-5.44(\mathrm{~m}, 7 \mathrm{H}), 5.56(\mathrm{~s}$, $1 \mathrm{H}), 5.60-5.67(\mathrm{~m}, 10 \mathrm{H}), 5.87-6.00(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.59(\mathrm{~m}, 36 \mathrm{H})$, $7.83-8.08(\mathrm{~m}, 24 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 62.4,65.9,66.0$, 66.2, 67.9, 77.3, 77.35, 77.39, 77.8, 81.7, 81.8, 82.0, 82.1, 82.2, 83.7, 104.9, 105.7, 105.89, 105.94, 106.0, 117.4, 128.0, 128.3, 128.4, 128.5, 128.6, 128.9, 129.06, 129.09, 129.14, 129.17, 129.21, 129.3, 129.4, 129.6, 129.85, 129.92, 129.95, 130.00, 133.2, 133.25, 133.27, 133.4, $133.45,133.50,133.6,133.9,165.19,165.22,165.3,165.5,165.69$, 165.72, 165.8, 166.1. Anal. Calcd for $\mathrm{C}_{117} \mathrm{H}_{102} \mathrm{O}_{37}: \mathrm{C}, 66.92 ; \mathrm{H}, 4.90$. Found: C, 66.97; H, 5.10.

Allyl [(2,3-Di-O-benzoyl-5-O-levulinyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-ara-binofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl-a-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-
benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-ara-binofuranosyl)]-(1 \rightarrow 5)-2,3-di-O-benzoyl- α-D-arabinofuranoside (16). A solution of 12 ($859 \mathrm{mg}, 0.755 \mathrm{mmol}, 1.0$ equiv), t-butylphthalic anhydride ($231 \mathrm{mg}, 1.13 \mathrm{mmol}, 1.5$ equiv), and $\mathrm{DBU}(0.137 \mathrm{~mL}$, $0.907 \mathrm{mmol}, 1.2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ in the presence of $4 \AA$ molecular sieves was stirred for 15 min at room temperature and cooled down to $-40{ }^{\circ} \mathrm{C}$. Then a solution of a glycosyl acceptor 15 ($2.06 \mathrm{~g}, 0.982 \mathrm{mmol}, 1.3$ equiv) and DTBMP ($388 \mathrm{mg}, 1.89 \mathrm{mmol}, 2.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ were added sequentially at $-40^{\circ} \mathrm{C}$ and the resulting solution was stirred for further 15 min at $-40{ }^{\circ} \mathrm{C}$. After dropwise addition of a solution of $\mathrm{Tf}_{2} \mathrm{O}(0.165 \mathrm{~mL}, 0.982 \mathrm{mmol}, 1.3$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ to the above solution via cannula, the reaction mixture was stirred at $-40^{\circ} \mathrm{C}$ for 15 min , allowed to warm up over 1 h to $0^{\circ} \mathrm{C}$, quenched with saturated aqueous NaHCO_{3}, and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phase was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $5: 2: 2)$ to afford compound $16(1.53 \mathrm{~g}, 63 \%)$ as a colorless amorphous form. $\mathrm{R}_{f}=0.38$ (hexane $\left./ \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2: 1: 1, \mathrm{v} / \mathrm{v} / \mathrm{v}\right) ;[\alpha]_{\mathrm{D}}{ }^{20}=$ $+0.25\left(\mathrm{c} 1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.11(\mathrm{~s}, 3 \mathrm{H})$, $2.53-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.65-2.72(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.95(\mathrm{~m}, 8 \mathrm{H}), 4.07(\mathrm{dd}$, $J=13.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.21(\mathrm{~m}, 8 \mathrm{H}), 4.27(\mathrm{dd}, J=13.2,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.37$ (dd, $J=10.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.50-4.63$ $(\mathrm{m}, 9 \mathrm{H}), 5.19(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 5.31-5.42(\mathrm{~m}, 10 \mathrm{H})$, $5.54(\mathrm{~s}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 5.59-5.66(\mathrm{~m}, 15 \mathrm{H}), 5.86-5.99(\mathrm{~m}, 1 \mathrm{H})$, $7.18-7.60(\mathrm{~m}, 54 \mathrm{H}), 7.81-8.08(\mathrm{~m} .36 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 27.9,29.9,38.0,63.7,65.9,66.0,66.1,67.9,77.2,77.3,77.4$, $77.7,81.2,81.5,81.6,81.7,82.0,82.1,82.2,104.9,105.9,106.0,106.1$, 117.5, 128.36, 128.41, 128.6, 128.7, 129.0, 129.1, 129.21, 129.24, $129.4,129.9,129.98,130.02,133.2,133.3,133.4,133.46,133.52$, 133.7, 133.9, 165.17, 165.20, 165.3, 165.5, 165.69, 165.71, 165.73, 165.75, 165.80, 172.6, 206.4. Anal. Calcd for $\mathrm{C}_{179} \mathrm{H}_{156} \mathrm{O}_{57}: \mathrm{C}, 66.79$; H , 4.88. Found: C, 66.72; H, 4.92 .

Allyl [(2,3-Di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-ara-binofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-ara-binofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)]-(1 \rightarrow 5)-2,3-di-O-benzoyl- α-D-arabinofuranoside (17). A solution of compound 16 ($2.50 \mathrm{~g}, 0.777 \mathrm{mmol}$) and 66% hydrazine-acetic acid $(1: 2, \mathrm{v} / \mathrm{v}, 9 \mathrm{~mL})$ in THF-MeOH $(10: 1, \mathrm{v} / \mathrm{v}, 22 \mathrm{~mL})$ was stirred at room temperature for 1 h . The solvent was removed and the resulting oil was dissolved in $\mathrm{EtOAc}(30 \mathrm{~mL})$. The EtOAc solution was washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$, dried over MgSO_{4}, concentrated in vacuo, and the residue was purified by silica gel flash column chromatography (hexane $/ \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $5: 2: 2)$ to afford compound $17(2.19 \mathrm{~g}, 90 \%)$ as a colorless amorphous form. $\mathrm{R}_{f}=0.18$ (hexane $/ \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 5: 2: 2, \mathrm{v} / \mathrm{v} / \mathrm{v}$); $[\alpha]_{\mathrm{D}}{ }^{20}=$ $+0.29\left(\mathrm{c} 1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.31$ (brs, 1 H$)$, $3.85-4.00(\mathrm{~m}, 10 \mathrm{H}), 4.08(\mathrm{dd}, J=13.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.21(\mathrm{~m}$, $8 \mathrm{H}), 4.27(\mathrm{dd}, J=13.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.48(\mathrm{~m}, 2 \mathrm{H}), 4.53-4.62$ $(\mathrm{m}, 7 \mathrm{H}), 5.19(\mathrm{dd}, J=10.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 5.31-5.42(\mathrm{~m}$, $10 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 5.59-5.65(\mathrm{~m}, 16 \mathrm{H}), 5.87-5.99(\mathrm{~m}, 1 \mathrm{H}), 7.18-$ $7.59(\mathrm{~m}, 54 \mathrm{H}), 7.83-8.05(\mathrm{~m}, 36 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $62.4,65.9,66.0,66.2,67.9,77.3,77.35,77.40,77.8,81.6,81.7,81.8$, 81.9, 82.0, 82.1, 82.2, 83.7, 104.9, 105.7, 105.9, 106.0, 117.5, 128.36, $128.42,128.56,128.60,129.06,129.09,129.14,129.18,129.22,129.3$, 129.4, 129.87, 129.94, 129.98, 130.03, 133.2, 133.3, 133.4, 133.47, 133.54, 133.6, 133.9, 165.21, 165.23, 165.3, 165.5, 165.70, 165.74, 165.76, 165.81, 166.2. Anal. Calcd for $\mathrm{C}_{174} \mathrm{H}_{150} \mathrm{O}_{55}$: C, 66.96; H, 4.84 . Found: C, 66.93; H, 4.82.

Allyl [(2,3-Di-O-benzoyl-5-O-levulinyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-ara-binofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-ara-binofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)]-(1 \rightarrow 5)-2,3-di-O-benzoyl- α-D-ara-
binofuranoside (18). A solution of $12(490 \mathrm{mg}, 0.431 \mathrm{mmol}, 1.0$ equiv), t-butylphthalic anhydride ($132 \mathrm{mg}, 0.646 \mathrm{mmol}, 1.5$ equiv), and DBU ($78.3 \mu \mathrm{~L}, 0.517 \mathrm{mmol}, 1.2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ in the presence of $4 \AA$ molecular sieves was stirred for 15 min at room temperature and cooled down to $-40{ }^{\circ} \mathrm{C}$. Then a solution of a glycosyl acceptor $17(1.75 \mathrm{~g}, 0.560 \mathrm{mmol}, 1.3$ equiv) and DTBMP ($221 \mathrm{mg}, 1.08 \mathrm{mmol}, 2.5$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ were added sequentially at $-40{ }^{\circ} \mathrm{C}$ and the resulting solution was stirred for further 15 min at $-40^{\circ} \mathrm{C}$. After dropwise addition of a solution of $\mathrm{Tf}_{2} \mathrm{O}\left(94.2 \mu \mathrm{~L}, 0.560 \mathrm{mmol}, 1.3\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ to the above solution via cannula, the reaction mixture was stirred at $-40^{\circ} \mathrm{C}$ for 15 min , allowed to warm up over 1 h to $0^{\circ} \mathrm{C}$, quenched with saturated aqueous NaHCO_{3}, and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phase was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/EtOAc/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2: 1: 1$) to afford compound $18(1.23 \mathrm{~g}, 67 \%)$ as a colorless amorphous form. $\mathrm{R}_{f}=0.23$ (hexane/ $\left.\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2: 1: 1, \mathrm{v} / \mathrm{v} / \mathrm{v}\right) ;[\alpha]_{\mathrm{D}}{ }^{20}=+0.33\left(\mathrm{c} 0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.65-$ $2.72(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.95(\mathrm{~m}, 10 \mathrm{H}), 4.08(\mathrm{dd}, J=13.2,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.12-4.21 (m, 10H), $4.27(\mathrm{dd}, J=12.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=$ $11.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.52-4.62(\mathrm{~m}, 11 \mathrm{H}), 5.19(\mathrm{~d}, J$ $=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 5.31-5.42(\mathrm{~m}, 12 \mathrm{H}), 5.54-5.68(\mathrm{~m}$, $22 \mathrm{H}), 5.87-5.99(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.59(\mathrm{~m}, 72 \mathrm{H}), 7.82-8.08(\mathrm{~m}, 48 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.9,29.9,38.0,63.7,65.9,66.0,66.2$, 67.9, 77.26, 77.32, 77.36, 77.42, 77.7, 81.2, 81.5, 81.6, 81.7, 82.0, 82.1, 82.18, 82.19, 104.9, 105.9, 106.0, 106.1, 117.5, 128.35, 128.42, 128.55, 128.59, 128.7, 129.0, 129.16, 129.23, 129.4, 129.86, 129.93, 129.98, 130.02, 133.2, 133.4, 133.45, 133.50, 133.7, 133.9, 165.2, 165.3, 165.5, 165.7, 165.75, 165.79, 172.6, 206.4. Anal. Calcd for $\mathrm{C}_{236} \mathrm{H}_{204} \mathrm{O}_{75}$: C, 66.85; H, 4.85. Found: C, 66.81; H, 4.92. MALDI-TOF: Calcd for $\mathrm{C}_{236} \mathrm{H}_{204} \mathrm{O}_{75} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 4263.09$, Found: 4263.13.

Allyl [(2,3-Di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-ara-binofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-d-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-d-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-ara-binofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-d-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-ara-binofuranosyl)]-(1 \rightarrow 5)-2,3-di-O-benzoyl- α-D-arabinofuranoside (19). A solution of compound $18(1.88 \mathrm{~g}, 0.443 \mathrm{mmol})$ and 66% hydrazine-acetic acid (1:2, v/v, 6 mL) in THF-MeOH ($10: 1, \mathrm{v} / \mathrm{v}, 11$ mL) was stirred at room temperature for 1 h . The solvent was removed and the resulting oil was dissolved in EtOAc $(30 \mathrm{~mL})$. The EtOAc solution was washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 20$ mL) and brine (30 mL), dried over MgSO_{4}, concentrated in vacuo, and the residue was purified by silica gel flash column chromatography (hexane/ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2: 1: 1$) to afford compound 19 ($1.66 \mathrm{~g}, 90 \%$) as a colorless amorphous form. $\mathrm{R}_{f}=0.23$ (hexane/ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, 2:1:1, v/v/v) ; $[\alpha]_{\mathrm{D}}{ }^{20}=+0.21\left(\mathrm{c} 0.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 3.82-4.02(\mathrm{~m}, 13 \mathrm{H}), 4.08(\mathrm{dd}, J=13.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-$ $4.22(\mathrm{~m}, 11 \mathrm{H}), 4.27(\mathrm{dd}, J=13.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.48(\mathrm{~m}, 2 \mathrm{H})$, $4.51-4.63(\mathrm{~m}, 10 \mathrm{H}), 5.20(\mathrm{dd}, J=10.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H})$, $5.30-5.43(\mathrm{~m}, 13 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 5.56-5.68(\mathrm{~m}, 22 \mathrm{H}), 5.87-5.99$ $(\mathrm{m}, 1 \mathrm{H}), 7.16-7.60(\mathrm{~m}, 72 \mathrm{H}), 7.81-8.07(\mathrm{~m}, 48 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 62.4,65.86,65.91,66.0,66.2,67.9,77.2,77.3,77.4$, 77.8, 81.6, 81.7, 81.8, 81.9, 82.0, 82.1, 82.2, 83.7, 104.9, 105.7, 105.88, $105.92,106.0,117.5,128.35,128.38,128.42,128.56,128.59,128.62$, 128.63, 129.05, 129.08, 129.12, 129.2, 129.3, 129.4, 129.86, 129.93, 129.97, 130.02, 133.2, 133.27, 133.29, 133.4, 133.45, 133.51, 133.53, 133.6, 133.9, 165.18, 165.21, 165.3, 165.5, 165.68, 165.72, 165.74, 165.8, 166.2. Anal. Calcd for $\mathrm{C}_{231} \mathrm{H}_{198} \mathrm{O}_{73}$: C, 66.98; H, 4.82. Found: C, 66.96; H, 4.77. MALDI-TOF: Calcd for $\mathrm{C}_{231} \mathrm{H}_{198} \mathrm{O}_{73} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 4164.99, Found: 4164.74.
p-Methoxyphenyl 3,4,6-tri-O-acetyl-2-deoxy-2-azido- α / β-D-glucopyranoside (S2). To a stirred mixture of acetyl 3,4,6-tri-O-acetyl-2-deoxy-2-azido- α / β-d-glucopyranoside $(\mathbf{S 1})^{35}(4.09 \mathrm{~g}, 11.0 \mathrm{mmol})$ and p-methoxyphenol $(2.04 \mathrm{~g}, 16.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added dropwise TfOH $(0.97 \mathrm{~mL}, 11.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was stirred at room temperature for 5 h , quenched
with saturated aqueous NaHCO_{3}, and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phase was washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/EtOAc, 2:1) to afford compound S2 ($4.13 \mathrm{~g}, 86 \%, \alpha / \beta=10: 1$): α form, colorless amorphous form. $\mathrm{R}_{f}=$ 0.28 (hexane/EtOAc, 4:1, v/v); IR (CHCl_{3} film) 2111, 1747, 1507, 1367, 1212, 1034, $829 \mathrm{~cm}^{-1}$; $[\alpha]_{\mathrm{D}}{ }^{20}=+1.78$ (c $\left.0.55, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})$, 3.45 (dd, $J=10.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.08(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.17-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=12.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{t}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.51(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 20.6, 20.7, 20.8, 55.7, 60.8, 61.8, 68.3, 68.5, 70.4, $97.5\left(J_{\text {С-Н }}=174.1\right.$ Hz), 114.8, 118.0, 150.1, 155.8, 169.7, 170.1, 170.5. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{9}$: C, 52.17; H, 5.30; N, 9.61. Found: C, 52.17; H, 5.33; N, 9.48. β form, colorless amorphous form, $\mathrm{R}_{f}=0.20$ (hexane/EtOAc, 4:1, v/v); IR (CHCl_{3} film) 2113, 1748, 1507, 1367, 1212, 1037, $829 \mathrm{~cm}^{-1}$; $[\alpha]_{\mathrm{D}}{ }^{20}=+0.13\left(\mathrm{c} 0.55, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.03$ $(\mathrm{s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $4.14(\mathrm{dd}, J=12.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=12.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.82$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-5.10(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.87(\mathrm{~m}, 2 \mathrm{H}), 7.00-$ $7.06(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.6,20.69,20.70$, $55.6,62.0,63.6,68.4,71.9,72.4,101.6\left(J_{\text {С-Н }}=165.9 \mathrm{~Hz}\right), 114.7,118.8$, 150.8, 156.0, 169.6, 169.9, 170.5. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{9}$: C, 52.17 ; H, 5.30; N, 9.61. Found: C, 52.14; H, 5.25; N, 9.49.
p-Methoxyphenyl 4,6-O-benzylidene-2-deoxy-2-azido- α-D-glucopyranoside (S3). A mixture of compound $\mathbf{S 2}(5.75 \mathrm{~g}, 13.1 \mathrm{mmol})$ and $\mathrm{NaOMe}(142 \mathrm{mg}, 2.63 \mathrm{mmol})$ in $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(10: 1 \mathrm{v} / \mathrm{v}, 55 \mathrm{~mL})$ was stirred at room temperature for 1 h . The reaction mixture was neutralized with DOWEX CCR-3 (H^{+}mode) resin, filtered through Celite, and concentrated in vacuo. $\mathrm{R}_{\mathrm{f}}=0.08$ (hexane/EtOAc, 1:2, v/v); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 3.24(\mathrm{dd}, J=10.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ $(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.81(\mathrm{~m}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{dd}, J=$ $10.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.88(\mathrm{~m}, 2 \mathrm{H}), 7.04-$ $7.10(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 54.0,60.1,62.3,69.7$, $70.5,72.4,97.7,113.5,117.4,150.2,154.8$.

The residue was dissolved in DMF (30 mL) containing benzaldehyde dimethyl acetal ($2.90 \mathrm{~mL}, 19.3 \mathrm{mmol}$) and CSA (599 $\mathrm{mg}, 2.58 \mathrm{mmol}$), and the solution was stirred for 10 h at $60-65^{\circ} \mathrm{C}$. The reaction mixture was quenched with water $(5 \mathrm{~mL})$ and diluted with $\mathrm{EtOAc}(50 \mathrm{~mL})$. The combined organic layer was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc, 3:1) to afford compound S3 ($4.78 \mathrm{~g}, 91 \%$) as a white solid. $\mathrm{R}_{f}=0.30$ (hexane/ EtOAc, 3:1, v/v); IR (CHCl_{3} film) 3371, 3014, 2108, 1508, 1377, 1209, 1108, 1094, 1034, 1019, 982, $831 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{20}=+1.10$ (c 0.4 , $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.96(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.38$ $(\mathrm{dd}, J=10.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{t}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.00-4.09(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=10.4,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.39(\mathrm{dt}, J=9.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~s}$, $1 \mathrm{H}), 6.82-6.88(\mathrm{~m}, 2 \mathrm{H}), 7.00-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.41(\mathrm{~m}, 3 \mathrm{H})$, $7.46-7.52(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.8,63.0,63.1$, $68.78,68.84,81.8,98.4\left(J_{\mathrm{C}-\mathrm{H}}=173.8 \mathrm{~Hz}\right), 102.3,114.9,118.3,126.4$, 128.5, 129.6, 136.9, 150.4, 155.7. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{6}$: C, 60.14; H, 5.30; N, 10.52. Found: C, 60.15; H, 5.32; N, 10.47.
p-Methoxyphenyl 3-O-benzoyl-4,6-O-benzylidene-2-deoxy-2-azido- α-D-glucopyranoside (S4). To a solution of compound S3 $(5.46 \mathrm{~g}, 13.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ were added benzoyl chloride $(3.17 \mathrm{~mL}, 27.3 \mathrm{mmol})$, pyridine $(4.42 \mathrm{~mL}, 54.7 \mathrm{mmol})$, and 4 dimethylaminopyridine ($334 \mathrm{mg}, 2.73 \mathrm{mmol}$). After stirring at room temperature for 2 h , the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined organic layer was washed with $1 \mathrm{~N} \mathrm{HCl}(2 \times 30 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, and brine (50 mL); dried over MgSO_{4}; and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc, 3:1) to afford compound $\mathrm{S} 4(6.51 \mathrm{~g}, 95 \%)$ as a white solid. $\mathrm{R}_{f}=0.35$ (hexane/ EtOAc, 3:1, v/v); IR (CHCl_{3} film) 3011, 2109, 1728, 1507, 1367, 1214, 1179, 1094, 1035, $828 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{20}=+1.80\left(\mathrm{c} 0.45, \mathrm{CHCl}_{3}\right)$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.50(\mathrm{dd}, J=10.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ $(\mathrm{s}, 3 \mathrm{H}), 3.80(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.33$ $(\mathrm{m}, 2 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{t}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.82-6.89(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.32(\mathrm{~m}, 3 \mathrm{H})$, $7.37-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.59(\mathrm{~m}, 1 \mathrm{H}), 8.08-8.14(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.7,61.8,63.5,68.7,69.5,79.5,98.6$ $\left(J_{\mathrm{C}-\mathrm{H}}=174.1 \mathrm{~Hz}\right), 101.8,114.8,118.1,126.2,128.3,128.5,129.2$, 129.5, 130.0, 133.4, 136.8, 150.1, 155.7, 165.6. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{7}$: C, 64.41; H, 5.00; N, 8.35. Found: C, 64.47; H, 5.02; N, 8.34 .
p-Methoxyphenyl 3-O-benzoyl-2-deoxy-2-azido- α-d-glucopyranoside (S5). To a solution of compound $\mathbf{S 4}(6.17 \mathrm{~g}, 12.3 \mathrm{mmol})$ in $\mathrm{MeOH}-1,4$-dioxane ($2: 1, \mathrm{v} / \mathrm{v}, 90 \mathrm{~mL}$) was added p - $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(233$ $\mathrm{mg}, 1.23 \mathrm{mmol})$. The mixture was stirred for 1 h at $65-70{ }^{\circ} \mathrm{C}$, neutralized with $\mathrm{Et}_{3} \mathrm{~N}$, and evaporated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc, 1:6) to afford compound $\mathbf{S 5}(4.71 \mathrm{~g}, 93 \%)$ as a white solid. $\mathrm{R}_{f}=0.55$ (hexane/EtOAc, 1:6, v/v); IR (CHCl_{3} film) 3337, 2974, 2110, 1508, 1380, 1216, 1088, 1046, $880 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{20}=+1.88\left(\mathrm{c} 0.4, \mathrm{CH}_{3} \mathrm{OH}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CD}\right) \delta 3.51(\mathrm{dd}, J=10.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ $(\mathrm{s}, 3 \mathrm{H}), 3.81-3.96(\mathrm{~m}, 4 \mathrm{H}), 5.57(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dd}, J=$ $10.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.91(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.53$ $(\mathrm{m}, 2 \mathrm{H}), 7.59-7.66(\mathrm{~m}, 1 \mathrm{H}), 8.10-8.15(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CD}\right) \delta 54.4,60.0,60.7,67.6,72.5,72.7,97.7\left(J_{\mathrm{C}-\mathrm{H}}=174.1\right.$ $\mathrm{Hz}), 113.9,117.6,127.7,129.0,129.1,132.6,150.0,155.0,165.8$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{7}$: C, 57.83; H, 5.10; N, 10.12. Found: C, 57.86; H, 5.14; N, 10.08.
p-Methoxyphenyl 3,6-di-O-benzoyl-2-deoxy-2-azido- α / β-d-glucopyranoside (S6). To a solution of compound S5 (3.44 g, 8.28 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-pyridine ($5: 3, \mathrm{v} / \mathrm{v}, 24 \mathrm{~mL}$) was added benzoyl chloride $(0.962 \mathrm{~mL}, 8.28 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for 3 h , the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10$ $\mathrm{mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined organic layer was washed with $1 \mathrm{~N} \mathrm{HCl}(2 \times 20 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$, and brine $(30 \mathrm{~mL})$; dried over MgSO_{4}; and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc, 1:1) to afford compound $\mathrm{S} 6(3.69 \mathrm{~g}, 86 \%)$ as a white solid. $\mathrm{R}_{f}=0.70$ (hexane/ EtOAc, 1:1, v/v); IR (CHCl_{3} film) 3415, 2106, 1702, 1508, 1451, 1269, 1221, 1117, 1083, 1070, 1038, $825 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.50(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH} \alpha), 3.54(\mathrm{dd}, J=10.4,3.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H} \alpha-2), 3.61(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 0.25 \mathrm{H}, \mathrm{OH} \beta), 3.74(\mathrm{~s}, 3.75 \mathrm{H}$, $\mathrm{OMe} \alpha, \beta$), $3.80-3.93$ ($\mathrm{m}, 1.75 \mathrm{H}, \mathrm{H} \alpha-4, \mathrm{H} \beta-2,4,5$), 4.25-4.32 (m, $1 \mathrm{H}, \mathrm{H} \alpha-5), 4.56-4.76$ (m, 2.5H, H $\alpha-6 \mathrm{a}, 6 \mathrm{~b}, \mathrm{H} \beta-6 \mathrm{a}, 6 \mathrm{~b}$), 4.95 (d, $J=$ $8.0 \mathrm{~Hz}, 0.25 \mathrm{H}, \mathrm{H} \beta-1), 5.21\left(\mathrm{dd}, J_{2,3}=9.6 \mathrm{~Hz}, J_{3,4}=9.2 \mathrm{~Hz}, 0.25 \mathrm{H}, \mathrm{H} \beta-\right.$ 3), $5.55(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} \alpha-1), 5.82\left(\mathrm{dd}, J_{2,3}=10.0 \mathrm{~Hz}, J_{3,4}=9.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H} \alpha-3), 6.70-6.80(\mathrm{~m}, 2.5 \mathrm{H}), 7.02-7.13(\mathrm{~m}, 2.5 \mathrm{H}), 7.39-$ $7.48(\mathrm{~m}, 5 \mathrm{H}), 7.54-7.62(\mathrm{~m}, 2.5 \mathrm{H}), 7.95-8.14(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.7,62.1,63.6,63.75,63.81,69.8,70.0,71.1$, $73.9,74.5,76.2,97.8\left(J_{\mathrm{C}-\mathrm{H}}=174.4 \mathrm{~Hz}\right), 101.7\left(J_{\mathrm{C}-\mathrm{H}}=165.6 \mathrm{~Hz}\right)$, 114.7, 114.8, 118.3, 118.8, 128.49, 128.53, 128.6, 129.0, 129.1, 129.7, 129.9, 130.2, 133.39, 133.43, 133.8, 133.9, 150.2, 151.0, 155.7, 155.9, 166.8, 166.9, 167.1, 167.2. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{8}$: C, 62.42; H, 4.85; N, 8.09. Found: C, 62.39; H, 4.78; N, 8.07.
p-Methoxyphenyl 3,6-di-O-benzoyl-2-deoxy-2-azido- α / β-d-galactopyranoside (S7). To a solution of compound $\mathbf{S 6}$ ($5.04 \mathrm{~g}, 9.71$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-pyridine ($10: 3, \mathrm{v} / \mathrm{v}, 39 \mathrm{~mL}$) was added dropwise $\mathrm{Tf}_{2} \mathrm{O}(4.09 \mathrm{~mL}, 24.3 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, washed with 1 N $\mathrm{HCl}(2 \times 20 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$, and brine (30 mL); dried over MgSO_{4}; and concentrated in vacuo. To the brown foam were added dry DMF $(40 \mathrm{~mL})$ and $\mathrm{NaNO}_{2}(6.69 \mathrm{~g}, 97.1 \mathrm{mmol})$, and the mixture was stirred for 2 h at room temperature. The mixture was diluted with $\mathrm{EtOAc}(100 \mathrm{~mL})$, washed with $1 \mathrm{~N} \mathrm{HCl}(2 \times 50 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, and brine $(50 \mathrm{~mL})$; dried over MgSO_{4}; filtered; and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc, 3:1) to afford compound $\mathbf{S} 7(4.41 \mathrm{~g}, 88 \%)$ as a white solid. $\mathrm{R}_{f}=0.25$ (hexane/ EtOAc, 3:1, v/v); IR (CHCl_{3} film) 3465, 2112, 1717, 1507, 1451, 1316, 1270, 1213, 1117, 1095, 1039, $829 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 3.74(\mathrm{~s}, 3.6 \mathrm{H}, \mathrm{OMe} \alpha, \beta), 4.03(\mathrm{t}, J=6.0 \mathrm{~Hz}, 0.2 \mathrm{H}, \mathrm{H} \beta), 4.10$ (dd, $J=10.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} \alpha-2$), 4.25 (dd, $J=10.8,8.4 \mathrm{~Hz}, 0.2 \mathrm{H}, \mathrm{H} \beta$), $4.28(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 0.2 \mathrm{H}, \mathrm{H} \beta), 4.42-4.69(\mathrm{~m}, 4.4 \mathrm{H}, \mathrm{H} \alpha-4,5,6 \mathrm{a}, 6 \mathrm{~b}$, $\mathrm{H} \beta-6 \mathrm{a}, 6 \mathrm{~b}), 4.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.2 \mathrm{H}, \mathrm{H} \beta-1), 5.03\left(\mathrm{dd}, J_{2,3}=10.4 \mathrm{~Hz}\right.$, $\left.J_{3,4}=2.8 \mathrm{~Hz}, 0.2 \mathrm{H}, \mathrm{H} \beta-3\right), 5.60(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} \alpha-1), 5.75$ (dd, $\left.J_{2,3}=11.2 \mathrm{~Hz}, J_{3,4}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} \alpha-3\right), 6.70-6.79(\mathrm{~m}, 2.4 \mathrm{H}), 7.04-$ $7.12(\mathrm{~m}, 2.4 \mathrm{H}), 7.34-7.62(\mathrm{~m}, 7.2 \mathrm{H}), 7.83-8.14(\mathrm{~m}, 4.8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.7,57.6,60.9,63.1,63.7,66.4,67.5$, 69.0, 71.3, 72.7, 74.1, $98.1\left(J_{\text {С-Н }}=175.2 \mathrm{~Hz}\right), 102.1\left(J_{\mathrm{C}-\mathrm{H}}=165.3\right.$ Hz), 114.6, 114.8, 118.5, 118.9, 128.5, 128.57, 128.59, 128.7, 129.15, 129.24, 129.5, 129.6, 129.9, 130.1, 130.3, 133.4, 133.5, 133.75, 133.80, 150.4, 151.1, 155.6, 155.9, 165.8, 166.6, 166.7. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{8}$: C, 62.42; H, 4.85; N, 8.09. Found: C, 62.43; H, 4.82; N, 8.01.
p-Methoxyphenyl 3,4,6-tri-O-benzoyl-2-deoxy-2-azido- α / β-d-galactopyranoside (S8). To a solution of compound $\mathbf{S 7}(2.96 \mathrm{~g}, 5.70$ mmol) in pyridine $(20 \mathrm{~mL})$ were added benzoyl chloride $(1.98 \mathrm{~mL}$, 17.1 mmol) and 4-dimethylaminopyridine ($139 \mathrm{mg}, 1.14 \mathrm{mmol}$). After stirring at $40{ }^{\circ} \mathrm{C}$ for 14 h , the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The combined organic layer was washed with $1 \mathrm{NHCl}(2 \times 20 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, and brine (50 mL); dried over MgSO_{4}; filtered; and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc, $5: 1$) to afford compound $\mathbf{S 8}(3.30 \mathrm{~g}, 93 \%)$ as a colorless amorphous form. R_{f} $=0.20$ (hexane/EtOAc, 5:1, v/v); IR $\left(\mathrm{CHCl}_{3}\right.$ film) 2112, 1723, 1602, 1506, 1451, 1315, 1264, 1212, 1178, 1107, 1068, 1039, 1026, 828 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 2.1 \mathrm{H})$, 4.09 (dd, $J=11.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=10.8,8.0 \mathrm{~Hz}, 0.7 \mathrm{H}), 4.34$ (dd, $J=6.8,6.0 \mathrm{~Hz}, 0.7 \mathrm{H}), 4.39(\mathrm{dd}, J=11.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{dd}, J$ $=11.6,5.2 \mathrm{~Hz}, 0.7 \mathrm{H}), 4.59(\mathrm{dd}, J=11.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dd}, J=$ $11.6,8.0 \mathrm{~Hz}, 0.7 \mathrm{H}), 4.78(\mathrm{dd}, J=7.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $0.7 \mathrm{H}), 5.34(\mathrm{dd}, J=10.8,3.2 \mathrm{~Hz}, 0.7 \mathrm{H}), 5.73(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.93$ $(\mathrm{d}, J=3.2 \mathrm{~Hz}, 0.7 \mathrm{H}), 6.00-6.09(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.79(\mathrm{~m}, 3.4 \mathrm{H}), 7.09-$ $7.15(\mathrm{~m}, 3.4 \mathrm{H}), 7.29-7.63(\mathrm{~m}, 15.3 \mathrm{H}), 7.87-8.11(\mathrm{~m}, 10.2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.60,55.63,58.2,61.3,62.4,62.8,67.3$, $68.1,68.6,68.9,71.67,71.69,98.1\left(J_{\mathrm{C}-\mathrm{H}}=175.9 \mathrm{~Hz}\right), 102.0\left(\mathrm{~J}_{\mathrm{C}-\mathrm{H}}=\right.$ $168.3 \mathrm{~Hz})$, 114.7, 114.8, 118.4, 118.8, 128.4, 128.5, 128.9, 128.99, 129.03, 129.1, 129.46, 129.49, 129.8, 129.9, 130.0, 130.2, 133.3, 133.4, $133.50,133.52,133.76,133.79,150.2,150.9,155.7,155.9,165.36$, 165.43, 166.0. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{9}$: C, 65.48; H, 4.69; N, 6.74. Found: C, 65.45; H, 4.67; N, 6.66 .

3,4,6-Tri-O-benzoyl-2-deoxy-2-azido- α / β-D-galactopyranose (S9). To a solution of compound S8 ($4.56 \mathrm{~g}, 7.31 \mathrm{mmol}$) and ceric ammonium nitrate ($20.0 \mathrm{~g}, 36.6 \mathrm{mmol}$) in toluene- $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$ $(1: 1.6: 1, \mathrm{v} / \mathrm{v} / \mathrm{v}, 180 \mathrm{~mL})$ was stirred at room temperature for 1 h . The mixture was diluted with water $(100 \mathrm{~mL})$ and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2$ $\times 150 \mathrm{~mL}$). The combined organic layer was washed with water (100 mL) and brine (100 mL), dried over MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc, 3:1) to afford compound $\mathrm{S} 9(3.02 \mathrm{~g}, 80 \%, \alpha / \beta=1.5: 1)$ as a white solid. $\mathrm{R}_{f}=0.25$ (hexane/EtOAc, 3:1, v/v); IR (CHCl_{3} film) 3446, 3014, 2115, 1727, 1452, 1316, 1270, 1215, 1093, 1069, $1027 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.99-4.05(\mathrm{~m}, 2.5 \mathrm{H}), 4.24(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.46$ $(\mathrm{m}, 4 \mathrm{H}), 4.59(\mathrm{dd}, J=11.2,6.4 \mathrm{~Hz}, 1.5 \mathrm{H}), 4.64(\mathrm{dd}, J=11.2,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.80(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1.5 \mathrm{H}), 4.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{brs}$, $1 \mathrm{H}), 5.28(\mathrm{dd}, J=10.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1.5 \mathrm{H}), 5.86$ (dd, $J=11.2,3.2 \mathrm{~Hz}, 1.5 \mathrm{H}), 5.91(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 1.5 \mathrm{H}), 7.30-7.62(\mathrm{~m}, 22.5 \mathrm{H}), 7.87-8.08(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 58.9,62.2,62.5,62.7,66.9,67.5,68.7,69.1,71.3$, $71.9,92.7\left(J_{\mathrm{C}-\mathrm{H}}=174.4 \mathrm{~Hz}\right), 96.7\left(J_{\mathrm{C}-\mathrm{H}}=163.6 \mathrm{~Hz}\right), 128.45,128.47$, 128.50, 128.54, 128.7, 128.9, 128.97, 129.00, 129.2, 129.3, 129.8, 129.86, 129.88, 130.0, 133.4, 133.5, 133.6, 133.7, 133.8, 165.61, 165.64, 166.4. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{8}: \mathrm{C}, 62.67$; H, 4.48; N, 8.12. Found: C, 62.64; H, 4.58; N, 8.04.

3,4,6-Tri-O-benzoyl-2-deoxy-2-azido- α / β-D-galactopyranosyl trichloroacetimidate (20). To a solution of compound S9 (735 mg, 1.42 $\mathrm{mmol})$ and $\mathrm{CCl}_{3} \mathrm{CN}(1.42 \mathrm{~mL}, 14.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(336 \mathrm{mg}, 2.41 \mathrm{mmol})$. After stirred at room temperature
for 30 min , the reaction mixture was heated at $30^{\circ} \mathrm{C}$ for 5 h , filtered through Celite, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc, $3: 1$) to afford compound $20(784 \mathrm{mg}, 83 \%, \alpha / \beta=0.3: 1)$ as a colorless amorphous form. $\mathrm{R}_{f}=0.43$ (hexane/EtOAc, 3:1, v/v); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.26(\mathrm{dd}, J=10.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=10.8,3.6$ $\mathrm{Hz}, 0.3 \mathrm{H}), 4.36-4.42(\mathrm{~m}, 2.3 \mathrm{H}), 4.56(\mathrm{dd}, J=11.6,7.2 \mathrm{~Hz}, 0.3 \mathrm{H})$, $4.65(\mathrm{dd}, J=13.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{t}, J=6.4 \mathrm{~Hz}, 0.3 \mathrm{H}), 5.37(\mathrm{dd}, J=$ $10.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dd}, J=10.8,3.2 \mathrm{~Hz}, 0.3 \mathrm{H}), 5.91(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H} \beta-1), 5.95(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 0.3 \mathrm{H})$, $6.71(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 0.3 \mathrm{H}, \mathrm{H} \alpha-1), 7.32-7.67(\mathrm{~m}, 11.7 \mathrm{H}), 7.86-8.09$ $(\mathrm{m}, 7.8 \mathrm{H}), 8.84(\mathrm{~s}, 0.3 \mathrm{H}, \mathrm{NH}-\alpha), 8.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}-\beta) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 57.9,61.2,61.7,62.3,67.1,68.0,69.5,69.9,72.0,72.3$, 94.9 ($\mathrm{C} \alpha-1$), 97.1 ($\mathrm{C} \beta-1$), 128.5, 128.6, 128.8, 128.86, 128.93, 129.0, 129.1, 129.5, 129.7, 129.87, 129.94, 130.0, 130.1, 133.4, 133.7, 133.86, 133.92, 160.85, 160.89, 165.3, 165.4, 166.0. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{O}_{8}$: C, 52.62; H, 3.50; N, 8.46. Found: C, 52.64; H, 3.51; N, 8.37.

1,2-O-isopropylidene-3,5-di-O-levulinyl- β-d-arabinofuranose (S11). To a solution of $1,2-O$-isopropylidene- α / β-D-arabinofuranose $(\mathbf{S 1 0})^{23}(4.71 \mathrm{~g}, 24.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$ were added levulinic acid $(8.63 \mathrm{~g}, 74.3 \mathrm{mmol}), N, N$-diisopropylcarbodimide ($11.5 \mathrm{~mL}, 74.3$ mmol) and 4-dimethylaminopyridine ($605 \mathrm{mg}, 4.95 \mathrm{mmol}$). After stirred at room temperature for 4 h , the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times$ 70 mL) and brine (100 mL), dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 2: 3$) to afford compound S 11 $(8.80 \mathrm{~g}, 92 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.43$ (hexane $/ \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $1: 2: 3, \mathrm{v} / \mathrm{v} / \mathrm{v}) ;[\alpha]_{\mathrm{D}}{ }^{20}=+0.087\left(\mathrm{c} 2.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.55-$ $2.66(\mathrm{~m}, 4 \mathrm{H}), 2.73-2.83(\mathrm{~m}, 4 \mathrm{H}), 4.23-4.33(\mathrm{~m}, 3 \mathrm{H}), 4.61(\mathrm{~d}, J=3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 26.0, 26.8, 27.8, 27.9, 29.89, 29.93, 37.8, 38.0, 63.9, 77.6, 82.8, 84.4, 106.0, 113.2, 171.8, 172.4, 206.5, 206.6. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{9}$: C, 55.95; H, 6.78. Found: C, 55.97; H, 6.79.

Allyl 3,5-di-O-levulinyl- α / β-D-arabinofuranoside (21). To a solution of compound $\operatorname{S11}(6.36 \mathrm{~g}, 16.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100$ mL) were added allyl alcohol ($2.24 \mathrm{~mL}, 32.9 \mathrm{mmol}$) and $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ $(4.70 \mathrm{~g}, 24.7 \mathrm{mmol})$ at room temperature. The resulting solution was stirred at room temperature for 5 h . The reaction mixture was quenched with saturated aqueous NaHCO_{3}, and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with aqueous NaHCO_{3} and brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ $\left.\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 2: 3\right)$ to afford compound $21(5.09 \mathrm{~g}, 80 \%, \alpha / \beta=$ 1:0.2) as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.18$ (hexane/ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 2: 3, \mathrm{v} / \mathrm{v} /$ v); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.16-2.23(\mathrm{~m}, 7.2 \mathrm{H}), 2.58-2.65$ $(\mathrm{m}, 4.8 \mathrm{H}), 2.75-2.81(\mathrm{~m}, 4.8 \mathrm{H}), 3.02(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 0.2 \mathrm{H}), 3.49(\mathrm{~d}, J$ $=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=13.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-4.13(\mathrm{~m}, 0.4 \mathrm{H})$, $4.17-4.30(\mathrm{~m}, 4.6 \mathrm{H}), 4.31(\mathrm{dd}, J=7.6,4.0 \mathrm{~Hz}, 0.2 \mathrm{H}), 4.40-4.47(\mathrm{~m}$, $1 \mathrm{H}), 4.75(\mathrm{dd}, J=4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-5.08(\mathrm{~m}, 1.4 \mathrm{H}), 5.20(\mathrm{dd}, J=$ $10.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=10.0,0.8 \mathrm{~Hz}, 0.2 \mathrm{H}), 5.31(\mathrm{dd}, J=17.2$, $1.2 \mathrm{~Hz}, 1.2 \mathrm{H}), 5.85-5.97(\mathrm{~m}, 1.2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 27.77, 27.83, 29.78, 29.81, 29.9, 37.75, 37.82, 37.9, 63.3, 65.5, 68.0, 68.7, 76.3, 79.1, 79.4, 79.8, 80.5, 80.8, 100.3, 107.0, 117.2, 118.0, 133.4, 134.0, 172.4, 172.8, 173.1, 206.5, 206.7, 207.1. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{9}$: C, 55.95; H, 6.78. Found: C, 55.83; H, 6.89.

Allyl (3,4,6-Tri-O-benzoyl-2-deoxy-2-azido- α-D-galactopyrano-syl)-(1 \rightarrow 2)-3,5-di-O-levulinyl- α / β-D-arabinofuranoside (22). A mixture of a galactosyl trichloroacetimidate donor $20(2.33 \mathrm{~g}, 3.52$ $\mathrm{mmol})$ and an arabinosyl acceptor $21(1.05 \mathrm{~g}, 2.71 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ was stirred for 5 min at room temperature and cooled down to $-40^{\circ} \mathrm{C}$. After the addition of TMSOTf $(0.192 \mathrm{~mL}, 1.06 \mathrm{mmol})$, the reaction mixture was stirred at $-40^{\circ} \mathrm{C}$ for 1 h , allowed to warm up over 30 min to $0^{\circ} \mathrm{C}$, quenched with triethylamine and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/EtOAc, 1:1) to afford compound $22(2.26 \mathrm{~g}, 94 \%)$: $\alpha-\alpha$ form: colorless amorphous form, $\mathrm{R}_{f}=0.35$ (hexane/EtOAc, 1:1, v/v); IR
$\left(\mathrm{CHCl}_{3}\right.$ film $) 3022,2113,1720,1602,1452,1360,1315,1268,1155$, $1094,1068,1026 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{20}=+1.40\left(\mathrm{c} 0.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.16(\mathrm{~s}, 6 \mathrm{H}), 2.53-2.80(\mathrm{~m}, 8 \mathrm{H}), 3.96(\mathrm{dd}, J=13.2$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=11.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=12.8,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.25-4.37(\mathrm{~m}, 4 \mathrm{H}), 4.43$ (dd, $J=10.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.63$ $(\mathrm{m}, 2 \mathrm{H}), 5.07(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}$, $1 \mathrm{H}), 5.28(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{dd}, J=$ $11.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.80-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-$ $7.65(\mathrm{~m}, 9 \mathrm{H}), 7.84-8.05(\mathrm{~m} .6 \mathrm{H})$; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 27.9, 29.8, 29.9, 37.9, 38.0, 58.1, 62.6, 63.5, 67.9, 68.0, 68.4, 69.1, 77.9, $79.9,85.5,97.5\left(\mathrm{~J}_{\mathrm{C}-\mathrm{H}}=178.6 \mathrm{~Hz}\right), 105.2,117.5,128.4,128.5,128.7$, 129.0, 129.1, 129.5, 129.86, 129.91, 133.3, 133.5, 133.7, 133.9, 165.4, 166.0, 172.4, 172.6, 206.2, 206.6. Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{16}$: C, 61.01; H, 5.35; N, 4.74. Found: C, 61.02; H, 5.41; N, 4.62. $\alpha-\beta$ form: colorless oil, $\mathrm{R}_{f}=0.23$ (hexane/EtOAc, 1:1, v/v); $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right.$ film $)$ 3021, 2113, 1720, 1452, 1360, 1316, 1268, 1215, 1156, 1094, 1068, $1026 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{20}=+0.77\left(\mathrm{c} 1.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 2.175(\mathrm{~s}, 3 \mathrm{H}), 2.184(\mathrm{~s}, 3 \mathrm{H}), 2.58-2.66(\mathrm{~m}, 4 \mathrm{H}), 2.72-2.82$ $(\mathrm{m}, 4 \mathrm{H}), 3.87(\mathrm{dd}, J=11.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=12.8,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.06-4.13(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=11.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.35$ $(\mathrm{m}, 3 \mathrm{H}), 4.41-4.50(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-5.14(\mathrm{~m}$, $2 \mathrm{H}), 5.28(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dd}, J=$ $7.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{dd}, J=11.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.84-5.95(\mathrm{~m}, 1 \mathrm{H})$, $6.02(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.65(\mathrm{~m}, 9 \mathrm{H}), 7.84-8.04(\mathrm{~m} .6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.8,28.0,29.9,30.0,37.99,38.01,57.9$, $61.8,65.9,67.8,68.3,68.4,68.5,76.5,78.4,83.6,99.8\left(J_{\text {С-Н }}=179.5\right.$ $\mathrm{Hz}), 100.7,117.8,128.4,128.6,128.7,129.1,129.2,129.3,129.8$, 129.9, 133.39, 133.43, 133.5, 133.7, 165.3, 165.4, 166.0, 172.4, 172.5, 206.5, 206.7. Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{16}$: C, 61.01; H, 5.35; N, 4.74. Found: C, 61.07; H, 5.20; N, 4.67.

Allyl (3,4,6-Tri-O-benzoyl-2-deoxy-2-acetamido- α-D-galactopyra-nosyl)-(1 $\rightarrow 2$)-3,5-di-O-levulinyl- α / β-D-arabinofuranoside (23). To a solution of compound $22(1.47 \mathrm{~g}, 1.66 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL})$ was added $\mathrm{PPh}_{3}(653 \mathrm{mg}, 2.49 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After added $\mathrm{H}_{2} \mathrm{O}(59.7$ $\mu \mathrm{L}, 3.32 \mathrm{mmol}$), the reaction mixture was stirred at room temperature for 1 h , quenched with water, and then extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. Colorless oil, $\mathrm{R}_{f}=0.45$ (hexane/ EtOAc, 1:2, v/v). To a solution of amine compound ($1.72 \mathrm{~g}, 2.00$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ were added $\mathrm{Ac}_{2} \mathrm{O}(0.377 \mathrm{~mL}, 4.00 \mathrm{mmol})$, pyridine ($0.647 \mathrm{~mL}, 8.00 \mathrm{mmol}$), and 4-dimethylaminopyridine (48.8 $\mathrm{mg}, 0.400 \mathrm{mmol}$). After stirring at room temperature for 5 h , the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (10 $\mathrm{mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic layer was washed with $1 \mathrm{~N} \mathrm{HCl}(20 \mathrm{~mL})$, saturated aqueous NaHCO_{3} $(20 \mathrm{~mL})$, and brine $(20 \mathrm{~mL})$; dried over MgSO_{4}; and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc, 1:4) to afford compound 23 ($1.71 \mathrm{~g}, 95 \%$): $\alpha-\alpha$ form: colorless amorphous form, $\mathrm{R}_{f}=0.18$ (hexane/EtOAc, 1:4, $\mathrm{v} / \mathrm{v})$; IR (CHCl_{3} film) 3378, 3019, 1721, 1677, 1602, 1521, 1452, 1364, 1316, 1269, 1215, 1157, 1112, 1068, $1026 \mathrm{~cm}^{-1}$; $[\alpha]_{\mathrm{D}}{ }^{20}=$ $+1.28\left(\mathrm{c} 0.45, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.94(\mathrm{~s}, 3 \mathrm{H})$, $2.11(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.55-2.84(\mathrm{~m}, 8 \mathrm{H}), 3.84(\mathrm{dd}, J=12.4,5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.09$ (dd, $J=12.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 4.26-4.40(\mathrm{~m}$, $3 \mathrm{H}), 4.43(\mathrm{dd}, J=11.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.66(\mathrm{~m}, 2 \mathrm{H}), 4.95-5.05$ $(\mathrm{m}, 2 \mathrm{H}), 5.15(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-5.28(\mathrm{~m}, 3 \mathrm{H}), 5.52(\mathrm{dd}, J=$ $10.82 .0 \mathrm{~Hz}, 1 \mathrm{H}), 5.75-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.28-7.70(\mathrm{~m}, 9 \mathrm{H}), 7.82-8.10(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.0,27.8,28.0,29.7,37.8,37.9,47.8,62.5,62.8,67.9$, $68.1,68.4,69.3,78.3,78.6,88.8,100.0\left(J_{\text {С-Н }}=174.1 \mathrm{~Hz}\right), 104.9,117.3$, 128.36, 128.40, 128.44, 128.56, 128.60, 129.1, 129.2, 129.5, 129.8, 130.0, 131.9, 131.96, 132.01, 132.1, 133.0, 133.2, 133.3, 133.5, 133.7, 165.7, 166.0, 166.1, 170.7, 172.4, 172.6, 206.1, 206.9. Anal. Calcd for $\mathrm{C}_{47} \mathrm{H}_{51} \mathrm{NO}_{17}: \mathrm{C}, 62.59 ; \mathrm{H}, 5.70 ; \mathrm{N}, 1.55$. Found: C, $62.62 ; \mathrm{H}, 5.78 ; \mathrm{N}$, 1.40. α - β form: colorless oil, IR (CHCl_{3} film) 3378, 3019, 1720, 1677, 1602, 1522, 1452, 1366, 1316, 1268, 1216, 1158, 1112, 1068, 1026 $\mathrm{cm}^{-1} ;[\alpha]_{\mathrm{D}}{ }^{20}=+0.56\left(\mathrm{c} 2.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.90(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.65(\mathrm{~m}, 4 \mathrm{H}), 2.74-$ $2.82(\mathrm{~m}, 4 \mathrm{H}), 3.95(\mathrm{dd}, J=12.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.24(\mathrm{~m}, 3 \mathrm{H})$, $4.25-4.36(\mathrm{~m}, 3 \mathrm{H}), 4.48(\mathrm{dd}, J=11.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{t}, J=6.4 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.95-5.03(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.14(\mathrm{~m}, 2 \mathrm{H}), 5.18(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.29(\mathrm{dd}, J=17.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{dd}, J=7.2,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.59(\mathrm{dd}, J=11.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.82-5.94(\mathrm{~m}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.61(\mathrm{~m}, 9 \mathrm{H}), 7.84-8.09(\mathrm{~m}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.1,27.9,28.2,29.7,29.9,38.0$, $38.2,47.8,62.2,65.4,67.9,68.37,68.44,69.5,77.0,77.4,84.2,100.4$ $\left(J_{\mathrm{C}-\mathrm{H}}=178.7 \mathrm{~Hz}\right), 100.5,117.7,128.4,128.6,128.7,129.3,129.40$, 129.44, 129.7, 129.9, 130.0, 133.25, 133.34, 133.4, 133.5, 165.8, 166.0, 166.2, 170.5, 172.51, 172.53, 206.4, 206.6. Anal. Calcd for $\mathrm{C}_{47} \mathrm{H}_{51} \mathrm{NO}_{17}: \mathrm{C}, 62.59 ; \mathrm{H}, 5.70 ; \mathrm{N}, 1.55$. Found: C, 62.55; H, 5.73; N, 1.43.
(3,4,6-Tri-O-benzoyl-2-deoxy-2-acetamido- α-D-galactopyrano-syl)-(1 \rightarrow 2)-3,5-di-O-levulinyl- α / β-D-arabinofuranose (24). A mixture of compound $23(1.30 \mathrm{~g}, 1.20 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}(42.5 \mathrm{mg}$, $0.24 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was stirred at room temperature for 8 h. The reaction mixture was filtered through Celite and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/EtOAc, 1:4) to afford compound $24(1.09 \mathrm{~g}, 88 \%, \alpha / \beta=1: 1)$ as a colorless amorphous form. $\mathrm{R}_{\mathrm{f}}=0.10$ (hexane/EtOAc, $1: 4, \mathrm{v} / \mathrm{v}$); IR $\left(\mathrm{CHCl}_{3}\right.$ film $) 3378,3019,1720,1678,1524,1452,1362,1316,1270$, $1215,1158,1112,1069,1026 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.90(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 6 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H})$, $2.54-2.85(\mathrm{~m}, 16 \mathrm{H}), 3.43(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=9.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ (dd, $J=6.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=12.0,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.29 (dd, $J=11.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.40(\mathrm{~m}, 3 \mathrm{H}), 4.43(\mathrm{dd}, J=9.2$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{dd}, J=12.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.66(\mathrm{~m}, 4 \mathrm{H}), 4.91$ $(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.95-5.04(\mathrm{~m}, 3 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.42-5.48(\mathrm{~m}, 2 \mathrm{H}), 5.51(\mathrm{dd}, J=11.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.56-$ $5.62(\mathrm{~m}, 2 \mathrm{H}), 5.89-5.94(\mathrm{~m}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.64(\mathrm{~m}, 18 \mathrm{H}), 7.81-8.11(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.2,28.0,28.05,28.12,28.2,29.7,29.8,29.9$, 38.06, 38.10, 38.2, 47.9, 48.0, 62.6, 62.9, 63.0, 64.4, 67.9, 68.1, 68.4, 68.5, 69.3, 69.6, 76.5, 77.6, 78.4, 78.9, 83.6, 88.7, 96.1, 99.88, 99.93, 101.0, 128.46, 128.49, 128.6, 128.7, 129.2, 129.3, 129.4, 129.5, 129.6, 129.86, 129.89, 129.92, 130.0, 130.1, 133.3, 133.41, 133.44, 133.57, 133.64, 165.88, 165.90, 166.22, 166.24, 166.3, 166.5, 172.5, 172.6, 172.7, 172.8, 206.5, 206.6, 207.3, 207.9. Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{47} \mathrm{NO}_{17}$: C, 61.32; H, 5.50; N, 1.63. Found: C, 61.30; H, 5.57; N, 1.50.
(3,4,6-Tri-O-benzoyl-2-deoxy-2-acetamido- α-d-galactopyrano-syl)-(1 $\rightarrow 2$)-3,5-di-O-levulinyl- α / β-D-arabinofuranosyl trichloroacetimidate (25). To a solution of compound $24(498 \mathrm{mg}, 0.578 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ were added $\mathrm{Cl}_{3} \mathrm{CCN}(0.579 \mathrm{~mL}, 5.78 \mathrm{mmol})$ and DBU ($8.75 \mu \mathrm{~L}, 0.0578 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min , and then concentrated in vacuo. The residue was purified by flash column chromatography (hexane/EtOAc, $1: 4)$ to afford compound $25(474 \mathrm{mg}, 82 \%)$ as a colorless amorphous form. $\mathrm{R}_{f}=0.30$ (hexane/EtOAc, 1:4, v/v); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.94(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.78(\mathrm{~m}, 6 \mathrm{H})$, $2.80-2.85(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.41(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=$ $12.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{dd}, J=8.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=11.6,6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.72(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-5.04(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dd}, J=11.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.97$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.70$ $(\mathrm{m}, 9 \mathrm{H}), 7.80-8.09(\mathrm{~m}, 6 \mathrm{H}), 8.56(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 23.1,27.8,28.1,29.76,29.81,37.8,38.1,48.1,62.4,62.6$, $68.25,68.30,69.1,77.3,82.6,85.9,99.2\left(J_{\mathrm{C}-\mathrm{H}}=175.1 \mathrm{~Hz}\right), 104.5$, 128.49, 128.53, 128.65, 128.70, 129.1, 129.2, 129.6, 129.86, 129.89, 130.1, 132.0, 132.05, 132.12, 132.2, 133.2, 133.4, 133.6, 160.3, 165.8, 166.1, 166.3, 170.8, 172.4, 172.8, 206.1, 207.3. Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{47} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{17}$: C, 54.91; H, 4.71; N, 2.78. Found: C, 54.89; H, 4.77; N, 2.59.

Allyl [(3,4,6-Tri-O-benzoyl-2-deoxy-2-acetamido- α-D-galactopyr-anosyl)-(1 \rightarrow 2)-(3,5-di-O-levulinyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl-α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofura-nosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl-α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofura-nosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-d-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl-α-D-arabinofuranosyl)-(1 \rightarrow 5)-(2,3-di-O-benzoyl- α-D-arabinofura-
nosyl)]-(1 \rightarrow 5)-2,3-di-O-benzoyl- α-D-arabinofuranoside (2). A mixture of donor $25(73.9 \mathrm{mg}, 0.0734 \mathrm{mmol})$ and acceptor 19 (234 $\mathrm{mg}, 0.0565 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was stirred for 5 min at room temperature and cooled down to $-40{ }^{\circ} \mathrm{C}$. After the addition of TMSOTf $(4.0 \mu \mathrm{~L}, 0.0220 \mathrm{mmol})$, the reaction mixture was stirred at $-40^{\circ} \mathrm{C}$ for 1 h , allowed to warm up over 30 min to $0^{\circ} \mathrm{C}$, quenched with triethylamine, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/EtOAc, 1:4) to afford compound $2(182 \mathrm{mg}, 65 \%)$ as a colorless amorphous form. R_{f} $=0.60$ (hexane/EtOAc, 1:4, v/v); IR $\left(\mathrm{CHCl}_{3}\right.$ film $) 3022,2925,1718$, 1601, 1452, 1366, 1315, 1261, 1177, 1108, 1070, 1026, 962, $857 \mathrm{~cm}^{-1}$; $[\alpha]_{\mathrm{D}}{ }^{20}=+0.44\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.94$ $(\mathrm{s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.82(\mathrm{~m}$, 6 H), $3.59(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.97(\mathrm{~m}, 12 \mathrm{H}), 4.05-4.23(\mathrm{~m}$, $13 \mathrm{H}), 4.25-4.33(\mathrm{~m}, 3 \mathrm{H}), 4.35(\mathrm{dd}, J=11.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43$ (dd, J $=13.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.50(\mathrm{~m}, 2 \mathrm{H}), 4.53-4.68(\mathrm{~m}, 13 \mathrm{H}), 4.92(\mathrm{~d}$, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-5.02(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.20$ (dd, $J=15.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26-5.43(\mathrm{~m}, 13 \mathrm{H}), 5.46-5.53(\mathrm{~m}, 3 \mathrm{H})$, $5.55-5.59(\mathrm{~m}, 2 \mathrm{H}), 5.61-5.69(\mathrm{~m}, 20 \mathrm{H}), 5.88-6.01(\mathrm{~m}, 1 \mathrm{H}), 5.93(\mathrm{~d}$, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.71(\mathrm{~m}, 81 \mathrm{H}), 7.81-$ $8.10(\mathrm{~m} .54 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.1,27.7,28.1,29.6$, 29.7, 37.7, 38.0, 47.9, 62.4, 62.9, 65.3, 65.8, 66.0, 66.1, 67.8, 68.2, 68.4, 69.1, 69.3, 77.0, 77.2, 77.3, 77.4, 78.6, 78.8, 81.6, 81.8, 81.9, 82.0, 82.1, $89.0,100.4\left(J_{\mathrm{C}-\mathrm{H}}=175.5 \mathrm{~Hz}\right), 104.9,105.5,105.6,105.8,105.85$, 105.94, 117.4, 128.3, 128.42, 128.44, 128.5, 128.7, 129.1, 129.2, $129.28,129.32,129.4,129.5,129.6,129.8,129.9,129.95,130.04$, 132.0, 132.1, 132.2, 133.18, 133.24, 133.3, 133.4, 133.5, 133.7, 133.8, $165.1,165.15,165.21,165.46,165.49,165.55,165.63,165.7,165.75$, 165.79, 166.0, 166.1, 170.7, 172.6, 172.7, 206.1, 207.1. MALDI-TOF: Calcd for $\mathrm{C}_{275} \mathrm{H}_{243} \mathrm{NO}_{89} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 5008.81 , Found: 5008.34.

- ASSOCIATED CONTENT

(5) Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b01723.

Scheme S1 for the synthesis of compound 20, Scheme S2 for the synthesis of compound 21 , and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for all reported compounds (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: hbj@kw.ac.kr.
*E-mail: kwan@yonsei.ac.kr.

Notes

The authors declare no competing financial interest.

- ACKNOWLEDGMENTS

This work was supported by a grant from the Korea National Research Foundation of Korea through the Center for Bioactive Molecular Hybrids (CBMH). Authors also acknowledge the support by the BK 21 program from the Ministry of Education and Human Resources Development of Korea and H.B.J. thanks to the research grant of Kwangwoon University in 2015 for this work.

REFERENCES

(1) (a) Paolo, W. F., Jr.; Nosanchuk, J. D. Lancet Infect. Dis. 2004, 4, 287. (b) Coker, R. J. Trop. Med. Int. Health 2004, 9, 25. (c) Wade, M. M.; Zhang, Y. Front. Biosci, Landmark Ed. 2004, 9, 975. (d) Davies, P. D. O. Ann. Med. 2003, 35, 235. (e) Nachega, J. B.; Chaisson, R. E. Clin. Infect. Dis. 2003, 36, 524.
(2) Bass, J. B., Jr.; Farer, L. S.; Hopewell, P. C.; O'Brien, R.; Jacobs, R. F.; Ruben, F.; Snider, D. E.; Thornton, G. Am. J. Respir. Crit. Care Med. 1994, 149, 1359.
(3) (a) Huebner, R. E.; Castro, K. G. Annu. Rev. Med. 1995, 46, 47. (b) Datta, M.; Radhamani, M. P.; Selvaraj, R.; Paramasivan, C. N.;

Gopalan, B. N.; Sudeendra, C. R.; Prabhakar, R. Tuberc. Lung Dis. 1993, 74, 180.
(4) Lowary, T. L. Mini-Rev. Med. Chem. 2003, 3, 689.
(5) (a) Chaumontet, M.; Pons, V.; Marotte, K.; Prandi, J. Tetrahedron Lett. 2006, 47, 1113. (b) Cren, S.; Gurcha, S. S.; Blake, A. J.; Besra, G. S.; Thomas, N. R. Org. Biomol. Chem. 2004, 2, 2418. (c) Pathak, A. K.; Pathak, V.; Kulshrestha, M.; Kinnaird, D.; Suling, W. J.; Gurcha, S. S.; Besra, G. S.; Reynolds, R. C. Tetrahedron 2003, 59, 10239. (d) Wen, X.; Crick, D. C.; Brennan, P. J.; Hultin, P. G. Bioorg. Med. Chem. 2003, 11, 3579. (e) Pathak, A. K.; Pathak, V.; Maddry, J. A.; Suling, W. J.; Gurcha, S. S.; Besra, G. S.; Reynolds, R. C.; Morehouse, C. B. Bioorg. Med. Chem. 2002, 10, 3145. (f) Pathak, A. K.; Pathak, V.; Maddry, J. A.; Suling, W. J.; Gurcha, S. S.; Besra, G. S.; Reynolds, R. C.; Morehouse, C. B. Bioorg. Med. Chem. 2002, 10, 923. (g) Centrone, C. A.; Lowary, T. L. J. Org. Chem. 2002, 67, 8862. (h) Burton, A.; Wyatt, P.; Boons, G.-J. J. Chem. Soc., Perkin Trans. 1 1997, 2375.
(6) (a) Bhamidi, S.; Scherman, M. S.; Rithner, C. D.; Prenni, J. E.; Chatterjee, D.; Khoo, K.-H.; McNeil, M. R. J. Biol. Chem. 2008, 283, 12992. (b) Shi, L. B.; Berg, S.; Lee, A.; Spencer, J. S.; Zhang, J.; Vissa, V.; McNeil, M. R.; Khoo, K.-H.; Chatterjee, D. J. Biol. Chem. 2006, 281, 19512. (c) Alderwick, L. J.; Seidel, M.; Sahm, H.; Besra, G. S.; Eggeling, L. J. Biol. Chem. 2006, 281, 15653. (d) Lee, A.; Wu, S. W.; Scherman, M. S.; Torrelles, J. B.; Chatterjee, D. J.; McNeil, M. R.; Khoo, K.-H. Biochemistry 2006, 45, 15817. (e) Alderwick, L. J.; Radmacher, E.; Seidel, M.; Gande, R.; Hitchen, P. G.; Morris, H. R.; Dell, A.; Sahm, H.; Eggeling, L.; Besra, G. S. J. Biol. Chem. 2005, 280, 32362. (f) Houseknecht, J. B.; Lowary, T. D. Curr. Opin. Chem. Biol. 2001, 5, 677. (g) Besra, G. S.; Khoo, K.-H.; McNeil, M.; Dell, A.; Morris, R.; Brennan, P. J. Biochemistry 1995, 34, 4257.
(7) Draper, P.; Khoo, K.-H.; Chatterjee, D.; Dell, A.; Morris, H. R. Biochem. J. 1997, 327, 519.
(8) Peng, W.; Zou, L.; Bhamidi, S.; McNeil, M. R.; Lowary, T. D. J. Org. Chem. 2012, 77, 9826.
(9) Wang, L.; Feng, S.; An, L.; Gu, G.; Guo, Z. J. Org. Chem. 2015, 80, 10060.
(10) Kandasamy, J.; Hurevich, M.; Seeberger, P. H. Chem. Commun. 2013, 49, 4453.
(11) Liu, Q.-W.; Bin, H.-C.; Yang, J.-S. Org. Lett. 2013, 15, 3974.
(12) Reddy, K. C.; Padmaja, N.; Pathak, V.; Pathak, A. K. Tetrahedron Lett. 2012, 53, 2461.
(13) Ishiwata, A.; Ito, Y. J. Am. Chem. Soc. 2011, 133, 2275.
(14) Imamura, A.; Lowary, T. L. Org. Lett. 2010, 12, 3686.
(15) Rademacher, C.; Shoemaker, G. K.; Kim, H.-S.; Zheng, R. B.; Taha, H.; Liu, C.; Nacario, R. C.; Schriemer, D. C.; Klassen, J. S.; Peters, T.; Lowary, T. L. J. Am. Chem. Soc. 2007, 129, 10489.
(16) Joe, M.; Bai, Y.; Nacario, R. C.; Lowary, T. L. J. Am. Chem. Soc. 2007, 129, 9885.
(17) Ishiwata, A.; Akao, H.; Ito, Y. Org. Lett. 2006, 8, 5525.
(18) Gadikota, R. R.; Callam, C. S.; Wagner, T.; Del Fraino, B.; Lowary, T. L. J. Am. Chem. Soc. 2003, 125, 4155.
(19) Marotte, K.; Sanchez, S.; Bamhaoud, T.; Prandi, J. Eur. J. Org. Chem. 2003, 2003, 3587.
(20) Yin, H.; D’Souz, F. W.; Lowary, T. L. J. Org. Chem. 2002, 67, 892.
(21) Yin, H.; Lowary, T. L. Tetrahedron Lett. 2001, 42, 5829.
(22) Sanchez, S.; Bamhaoud, T.; Prandi, J. Tetrahedron Lett. 2000, 41, 7447.
(23) Mereyala, H. B.; Hotha, S.; Gurjar, M. K. Chem. Commun. 1998, 685.
(24) Fraser-Reid, B.; Lu, J.; Jayaprakash, K. N.; Lopez, J. C. Tetrahedron: Asymmetry 2006, 17, 2449.
(25) Lu, J.; Fraser-Reid, B. Chem. Commun. 2005, 862.
(26) Lu, J.; Fraser-Reid, B. Org. Lett. 2004, 6, 3051.
(27) Thadke, S. A.; Mishra, B.; Hotha, S. Org. Lett. 2013, 15, 2466.
(28) Lee, Y. J.; Lee, K.; Jung, E. H.; Jeon, H. B.; Kim, K. S. Org. Lett. 2005, 7, 3263.
(29) Duynstee, H. I.; van der Marel, G. A.; van Boom, J. H.; de Koning, M. C. Tetrahedron Lett. 1998, 39, 4129.
(30) (a) Du, Y.; Pan, Q.; Kong, F. Carbohydr. Res. 2000, 329, 17. (b) Gelin, M.; Ferrieres, V.; Plusquellec, D. Carbohydr. Lett. 1997, 2, 381. (c) Schmidt, R. R.; Hoffmann, M. Tetrahedron Lett. 1982, 23, 409. (31) Khasnobis, S.; Zhang, J.; Angala, S. K.; Amin, A. G.; McNeil, M. R.; Crick, D. C.; Chatterjee, D. Chem. Biol. 2006, 13, 787.
(32) Kim, K. S.; Fulse, D. B.; Baek, J. Y.; Lee, B.-Y.; Jeon, H. B. J. Am. Chem. Soc. 2008, 130, 8537.
(33) Baek, J. Y.; Lee, B.-Y.; Pal, R.; Lee, W.-Y.; Kim, K. S. Tetrahedron Lett. 2010, 51, 6250.
(34) See Experimental Section and Supporting Information.
(35) Rele, S. M.; Iyer, S. S.; Baskaran, S.; Chaikof, E. L. J. Org. Chem. 2004, 69, 9159.

[^0]: Received: July 19, 2016
 Published: October 10, 2016

